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1. Introduction

PD and MIDI

This paper is about interactive music systems.  It will attempt to explain what

interactive music systems are, and what it is about these systems that makes them useful

musical tools.  A limited understanding of some of the technical issues that underlie the

development of such systems is necessary for an intelligent discussion of their properties

to take place.  Specifically, it is assumed that the reader has a working understanding of

MIDI, and has had some experience with PD or similar programming environment.

MIDI is the Musical Instrument Digital Interface, a protocol from the 1980's that

grew out of the desire to have synthesizers, keyboards, and computers manufactured by

different companies be able to work together in a unified technical environment.  MIDI's

shortcomings as both a transmission protocol and as a means of musical representation

have been discussed at length elsewhere,1 and there is no need to repeat the discussion

here.  However, while many different schemes of transmission and representation have

been developed, and many of them are in no doubt superior to MIDI, none of them have

achieved the universality of MIDI.  Despite its shortcomings, MIDI continues to be used

by a large number of musicians and composers, and it will undoubtedly continue to be

used for the foreseeable future, if for no other reason than that the large number of MIDI-

based software tools that have been created over the twenty years of MIDI's existence

will be difficult to replace.  In most of the systems discussed in this paper, MIDI is used

                                                
1 See for example Robert Rowe’s Interactive Music Systems: machine listening and composing (Cambridge, Mass.: MIT Press,

     1993), 10, Rowe’s Machine Musicianship (Cambridge, Mass.: MIT Press, 2001), 29, and Richard F Moore’s  “The Dysfunctions     
     of MIDI.”  Computer Music Journal 12, No. 1  (Spring 1998), 19-28.
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both as a means of internal representation and as the primary method of getting data to

and from the outside world.

PD is a graphical programming environment specifically designed for the creation

of interactive systems.  It is intended for use by technically-informed composers,

musicians, and artists; many of the low-level tasks (such as memory management) that

can make programming a chore and a distraction from the artistic task at hand are fully

automated in PD.  PD uses "objects," which are boxes that "do stuff" on their own and

can be connected to other objects to created complicated behavior; an object's name

determines its behavior.  The function of many types of objects is evident from their

names (such as + and integer; the name of objects will be rendered with modified

Terminal font throughout this paper).  The roles of other objects are not so obvious and

will be explained in the course of the text.  An object of particular importance is pd,

which creates a container subpatch that can be used to separate, organize, and hide groups

of objects that perform a function together.  A thorough explanation of PD can be found

in PD's documentation and help files, which are contained in the CD-ROM appendix to

this paper.

PD is the ugly cousin of Max/MSP, and much of the two environments (including

many types of objects) is similar or identical.  PD has several important advantages over

Max, however, that bear mentioning.  First, while Max runs only on Macintosh

computers (and currently only on OS 9.x, not OS X), PD runs on most of the major

operating systems in use today, including Windows 98, NT, and XP, Mac 9.x and X,

several flavors of Linux, Unix, Palm, and IRIX.  Patches (as PD programs are called) are

fully portable between these operating systems.  Secondly, PD contains an extensible data
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structure that brings PD more closely in line with Object-Oriented Programming design

philosophy allows it to be used for data-heavy "serious" programming, including graphics

processing.  Many of the external object libraries that can be loaded into PD to extend its

capabilities make use of this data structure to create new data types; one, the matrix data

type defined in the ZEXY library, is used extensively in this paper.  Finally, while

Max/MSP costs upward of several hundred dollars, PD is completely free, and is

available for download from several locations on the internet.  PD's name, which stands

for both "Pure Data" and "Public Domain," is a direct reference to these advantages.

Interactive Music Systems

Interactive systems are, in the most obvious terms, systems that interact with the

world around them.  A "system" is an abstract entity that can be characterized as having a

set of inputs, a set of outputs, and some discernable correlation between specific inputs

and outputs.  Often, these connections are referred to as "behaviors."  A key point in the

identity of systems is their ability to be isolated from their environment, so that these

behaviors can be studied, learned, practiced, and so forth, by human users.

Systems vary immensely in their complexity.  A very simple system consists of a

battery, a light bulb, and a button switch.  The behavior of this system is quite simple:

when the switch is pushed (input), the light turns on (output).  A piano is a much more

complex example, since there are eighty-seven more buttons, as well as some additional

controls that modify the output caused by buttons (the pedals).  Despite the added

complexity, a piano's input can still be mapped to its output. It is still, in theory, a closed

system.
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An even more complicated system consists of a computer connected to MIDI gear

and an audio interface to facilitate its use in making music.  Such a system still has a set

of inputs (MIDI messages and audio signals, ASCII keyboard presses and mouse clicks)

and outputs (MIDI messages and audio signals, and possible graphical output), as well as

a large and complex, but still explicit and algorithmic, set of behaviors.

All systems are by definition "active;" that is, they have behaviors.  The do things

when other things are done to them.  However, it is necessary to distinguish between

systems that are "interactive" and ones that are "reactive."  All systems are, to a limited

extent, interactive, in that their behavior has some effect on the outside world, and that

the world must make some adjustment as a result.  This interaction generally occurs at a

very low level—a violinist listens to the sounds being coming from his violin and makes

tiny, unconscious adjustments to keep the instrument in tune.  Similarly, a pianist listens

to the instrument that he is playing and adjusts his touch to control the piano's tone and

dynamics.  It is this capacity that allows pianists to quickly adapt and play unfamiliar

instruments, musicians to sight-read and learn new repertoire.  However, once a musician

is familiar with his instrument and material, this interaction is relegated to the land of

"reactive" behavior—the system's behavior is entirely expected and does not cause the

musician to make appreciable decisions or changes in behavior.

Traditional instruments therefore constitute what are essentially one-directional

systems, since the information feedback from the instrument to the performer is minimal

and low-level.  Conventional MIDI performance setups, consisting of a MIDI controller

such as a keyboard and a sound generator such as a synthesizer, are even more one-

directional, since the amount of information that feeds back to the performer is even
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smaller—the keys do not vibrate, the timbre does not change organically with changes in

keyboard touch, and so forth.

As another example of a system with a one-directional informational flow,

consider a piece of electronic music that has been recorded to tape and is being replayed.

If you add a live performer who, for instance, plays a piano score in synch with the tape,

you end up with a more interesting performance, but the system effectively hasn't

changed.  The tape player isn't effected by the presence of the performer, who is

nonetheless listening to the tape and adjusting his playing (tempo, dynamics, etc.).  Note

that the presence of a computer doesn't necessarily make the system interactive, or even

more complex.  For example, a MIDI sequencer or digital audio workstation could easily

be substituted for the tape player in the system described above, without any significant

changes in complexity or information flow.

More complex systems do involve, however, the insertion of a computer at some

point in the information path.  As a very basic example of a system that is more complex,

a computer can arpeggiate the notes of the chord being played by the performer.

Immediately, the system becomes a more active part of the performance.  The system is

actively supplying musical material, and the performer must pay careful attention to what

the system is doing in order to produce a musical result.  The essence or interactive music

systems, then, is that they, along with one or more human performers, cooperatively

participate in a musical performance, in a way that makes both the human and the

computer components active and essential.  The similarity to human-to-human musical

interaction is not accidental.  In reality, "computers simulate interaction... by allowing

users to change aspects of their current state and behavior.  This interactive loop is
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completed when the computers, in turn, affect the further actions of the users." 2  The

design of interactive music systems, "assumes an implicit recursive element, namely a

loop between the 'sound' and the 'performer': the computer output somehow affects the

performer's next action (reaction), which in turn will eventually affect the computer

system in some way." 3

This is a common description of interactive music systems.  Robert Rowe states

that "interactive computer music systems are those systems whose behavior changes in

response to musical input.  Such responsiveness allows these systems to participate in

live performances, of both notated and improvised music." 4  Note the emphasis on

behavior, musicality, and responsiveness.  An alternate definition is suggested by

Winkler: "Interactive music is defined here as a music composition or improvisation

where software interprets a live performance to affect music generated or modified by

computers.” 5   More specifically, interactive music systems "can be viewed as dedicated

compositional tools capable of reacting in some way upon changes they detect in their

'external conditions,' namely in the initial input and the run-time control data.  Such data

are usually set and adjusted by some agency -- a performer, a group of performers (it

could be a composer, too, either working in the studio of experimenting on stage,

improvising) using some control device." 6

All of these definitions of interactive music systems are correct, because many

different types of interactive systems exist.  Rowe suggests the use of three categorical

                                                
2 Todd Winkler’s Composing Interactive Music: Techniques and Ideas Using Max (Cambridge, Mass.: MIT Press, 2001), 3.
3 Agostino Di Scipio’s "Sound is the Interface: Sketches of a Constructivistic Ecosystem View of Interactive Signal Processing.”

     Proceedings of the Colloquium on Musical Informatics (Firenze 8-10 May 2003), 1.

4 Rowe’s Interactive Music Systems, 1.

5 Todd Winkler’s Composing Interactive Music, 4.
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dimensions to classify systems.  The "score-driven—performance-driven" dimension

addresses the amount of improvisation that is expected of the performer and the

computer.  The "transformative-generative-sequenced" dimension examines the source of

the musical material being used in a work, especially the material being used by the

computer.  Finally, the "instrument-player" dimension addresses the musical roles of the

performer and the computer. 7

Rowe makes an important point as to the purpose of such a classification: it is to

recognize the similarities between systems and identify their common predecessors. 8

Such classification is, however, quite troublesome.  Definitions that create categories like

those above are approximate.  When is a score following system more than a score

follower?  If it handles periods of improvisation and adapts its scored output to better fit

the local improvisatory context, is it still to be considered a score follower?  If an

instrument system spontaneously begins to play notes of its own from time to time, is it

still an instrument system, or has it become something different?

This last example suggests a further problem with categorical classification: in the

course of a piece, many systems shift roles and behaviors drastically.  Such internal

changes are often the focus of interactive compositions.  "A central issue that confronts

all composers of interactive music is the drama of human-computer interaction.  What is

the relationship between humans and computers?" 9  In fact, "it becomes clear that the

system design itself, and particularly the actions mediated by the user interface

(interdependencies among control variables), become the very matter of composition and

                                                                                                                                                
6 Di Scipio’s "Sound is the Interface,” 1.

7 Rowe’s Interactive Music Systems, 6-7.

8 Ibid., 6.
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can no longer be separated by the internal development of sound.” 10  As "distinctions

fade between instrument and music," composers "compose" the systems that make the

music as much as they compose the music itself. 11  Indeed, interactive composers such as

George Lewis begin to collectively refer to their software systems, compositional

strategies, and musical output as "compositions." 12

This development suggests an additional motivation for classifying interactive

systems: it is necessary to do so to even understand many interactive works.  Questions

like those asked above by Winkler lead one to think that a parametric, rather than

categorical, classification would be appropriate when one is trying to construct a

taxonomy of interactive music works.  What is the relationship between humans and

computers?  Who is making what decisions?  And how, and with what certainty?  What

would happen if one stopped playing?  Would the other stop, take a solo, or even notice

that the other had fallen silent?  Who is leading?  Who is listening?

                                                                                                                                                
9 Todd Winkler’s Composing Interactive Music, 21.

10 Di Scipio’s "Sound is the Interface,” 1.

11 Joel Chadabe’s Electric Sound : the past and promise of electronic music (Upper Saddle River, NJ : Prentice Hall, 1997), 291.

12 George E. Lewis’s "Too Many Notes: Computers, Complexity, and Culture in Voyager.”  (Leonardo Music Journal 10 (2000):  33.
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2. Proposed Taxonomy of Interactive Music Systems

Who is Playing?

The first way we can examine the information flow in a system is to look at who

is playing, a description that I shall call Participation.  The term Participation shall be

defined to include only those times when a computer or performer is actively producing

output, and shall exclude the kind of activity that effects the output of another performer

but does not result in any actual output of its own accord.  A special case must be made

for systems that involve a performer and a computer working collaboratively to produce

sounds from a single source—what Rowe calls "instrument" systems.  Since activity on

the part of both the performer and the computer is necessary in order to produce any

sound at all, it seems logical to say that their Participation is about equal.

Since the amount of Participation on the part of human and computer performers

in a piece are largely uncorrelated—a computer doesn't necessarily start to make more

sound when the human makes less—Participation should be pictured as a two-

dimensional description, with human and computer performer participation varying

independently.  See Figure 1, where the amount of human Participation is depicted

horizontally, and the amount of computer Participation is pictured vertically.

To cite the extremes of this description, take two solo performances, one by a

human musician and another by a computer system.  The first make take the form of a

piano sonata, the second, a prerecorded score of electronic music being replayed.  Using

the graphical scheme introduced above, the piano sonata would be marked off at (1, 0),

and the scored computer piece would be at (0,1).  An example of a piece with nearly
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equal amounts of human and computer

Participation is Salvatore Martirano's

"YahaSALmaMAC Orchestra" (1986).

In this piece, portions of the performer's

playing on a MIDI keyboard are captured

by the computer, and are then processed,

mutated, delayed, and then played back in

canon with the performer's ongoing

performance. 13  Using the graphical

scheme, this piece would be roughly

(0.75, 0.75) (see Figure 2), with the

Participation of both the human and the

computer dipping and peaking throughout

the course of the piece.

Admittedly, this is not at all a

rigorous or scientific description, since

Participation as I have defined it is

difficult to quantify in a musically

meaningful way.  The Participation

diagrams are based on authors’

descriptions of their systems rather than

on measurements of the systems’ functioning.  However, this description shall prove to

                                                
13 Chadabe’s Electric Sound, 213-214.

Figure 1: Example Participation Diagram

Figure 2: YahaSALmaMAC Participation
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be useful for comparing relative amounts of Participation, both between pieces and

within individual pieces.

Who is listening?

One of the major challenges faced by early electronic music composers who

wished to write music in the concert tradition was one of drama and presentation: how

does one perform music that had been created on electronics in a way that is interesting to

an audience?  Of the many answers to this question, one of the most widespread was and

continues to be the inclusion of a live musician performing onstage, on electronics or on a

traditional instrument, alongside a previously realized taped electronic part.  A

Participation diagram places this piece again somewhere near (0.75, 0.75), with

fluctuations throughout the piece.

The problems with this approach are immediate and obvious: the tape part and the

live musician are essentially two separate systems operating in the same time and

acoustical space.  While deeper, musical connections between the two parts could be

worked out in advance, the presence of any realtime connection between the parts is

illusory.  Real musical interaction does not occur.  The performer's musical flexibility and

spontaneity is greatly restricted.  The restraints, especially the temporal ones, are rigid in

such a setup.

As composers moved from working with analog electronics to working with

computers, the problem persisted:

Computer music compositions written for live performance often include
performers playing traditional acoustic instruments.  In the early days, the
only viable method was to have the performer play along with a previously
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recorded tape of an electronically realized part.  As computers became faster,
some performers began to play with parts synthesized in real time.  Either
approach represents a one-way interaction in which performers' actions are
influenced by what they hear from the electronic source.14

Dodge points out the pertinent and limiting feature of a system such as this: the flow of

information is one-directional.  The performer must react to the tape part, especially with

relation to changes in tempo, sudden dynamic and tonal shifts, but the tape player (or

realtime synthesis algorithm) chugs along, oblivious to the actions (or inaction) of the

performer.  The human is listening.  The electronics are not.

A separate visualization is needed to describe what's being discussed here: cross-

influence between the various actors in a performance, which I shall call simply

Influence.  Again, two dimensions are needed, since human and computer Influence will

vary independently.  The result is another two-dimensional graph, with

computer→human Influence increasing to the right, and with human→computer

Influence increasing upward on the graph.  Once again, the diagrams are based on

authors’ descriptions of their systems rather than on measurements of the systems’

functioning.

In the system being discussed here, the human is, at most, adjusting to expected

changes in tempo and dynamics on the part of the computer, so the computer→human

influence is very low.  Meanwhile, nothing that the human does (short of pressing the

stop button) will have any effect on the computer: the human→computer Influence is

                                                
14 Charles Dodge and Thomas A. Jerse’s  Computer Music: synthesis, composition, and performance, Second Edition.  (United

States: Wadsworth Publishing Company, 1997), 412.
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zero.  The Influence diagram of this

system, pictured in Figure 3, would place

it at around (0.1, 0).15

Take, by way of contrast, the work

of George Lewis, whose Voyager system

"has its own behavior, which is

sometimes influenced by the performance

of the humans."16 Lewis's pieces are

mostly improvisations, in which the

humans and the computer play off of each

other in various ways.  "I conceive a

performance of Voyager as multiple parallel streams of music generation, emanating

from both the computers and the humans—a nonhierarchical, improvisational, subject-

subject model of discourse." (Lewis "Too Many Notes" 34).  The computer makes its

own musical decisions, often based on analyses of the performer's playing, and "decisions

taken by the computer have consequences for the music that must be taken into account

by the improviser." 17  The large amount of Influence that the computer and human exert

on each others' Participation, allows real, musical Interaction to occur.  The Influence

diagram in Figure 4 places this piece at around (0.5, 0.5).

We therefore have two ways of describing interactive computer music systems,

two graphs that depict, albeit roughly, information about who is making sound and who is

                                                
15 The Participation and Influence graphics are rendered using GEM, PD’s Graphics Environment for Multimedia.

16 Rowe’s Interactive Music Systems, 80.

17 George Lewis’s "Too Many Notes,”  26.

Figure 3: Example Influence Diagram
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deciding when and how the sound is going to be made.  These two descriptions vaguely

describe the information flow in an interactive music system.

           Figure 4: George Lewis Influence
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3. Envisioning Influence: Time Synchronization

Tempo Matching

Composers of electronic music have often presented their work to a live concert

audience in the form of a live performer playing along with a prerecorded electronic part.

As was discussed, this arrangement places great restrictions on the performer, specifically

in terms of temporal flexibility.  An early approach to solving the problems of live

performance with taped electronics involved manually varying the playback speed of the

tape to better match the tempo of the performers.  This method was used by Earle Brown

in his 1963 piece “Times Five” in order to synchronize a tape with a small orchestra. 18

However, two major problems are quickly observed: first, from a purely technical

standpoint, changing the speed of the tape playback effects not only tempo, but pitch as

well, and this may not be a desired effect.  Secondly, and more importantly for the

discussion at hand, the lever that controls tape playback speed must be controlled by

another human, another performer.  The problem hasn’t really been solved, merely

sidestepped, for the electronics still aren’t listening.

We shall put aside the deeper issue for a moment and look at the more technical

problem of the relationship between changes in playback speed and changes in pitch.

Such simple “time warping” effects can be mimicked in the digital domain (with the

same pitch shifting side-effects) by altering the playback speed of a sample contained in a

wavetable.  In Figure 5, the sample player tabread4~ receives a “playback rate index”

from the horizontal fader; an index of 1 causes the playback to be at the original speed.

                                                
18 Chadabe’s Electric Sound, 70.
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A fractional index causes the playback to be

slowed, an index greater than 1 causes the

playback speed to be increased, and a negative

index causes playback to be reversed.  Depending

on the material being replayed, the pitch-shifting

side-effects can be innocuous, except for when the

playback rate index is actually changing, during

which time the warping effect is extremely

noticeable.  Causing the playback speed to shift

more abruptly reduces the warping effect but can

result in noticeable artifacts, especially pops.

A novel solution to the side effect of

frequency warping was concocted as early as 1946,

when the British physicist and Nobel Laureate

Dennis Gabor invented a device capable of

changing the time scale of a sound without

changing its pitch, which he called the

“Kinematical Frequency Convertor.”  The basic physical mechanism was developed by

music concrete gurus Pierre Schaeffer and Jacques Poullin and called the Phonogene.  It

was later marketed by the German company Springer as the Zeitregler and the

Tempophon.  The Tempophon was used in Herbert Eimert’s 1963 piece “Epitaph fur

Aikichi Kuboyama.” 19

                                                
19 Curtis Roads’ Microsound (Cambridge, Mass.: MIT Press, 2001), 61 .

Figure 5: Varispeed Sample Playback
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These machines work by time-granulating the recorded sound through the use of

multiple, spinning playback heads.  The heads spin across the tape (or, in Gabor’s case,

film) in the same direction that the tape is moving.  The result is that the sound on tape is

“sampled” at regular intervals, forming short “grains” of sound.  To achieve time

expansion, the spinning speed of the heads is increased, causing multiple copies of the

original signal to be taken.  When summed, these grains form a time-stretched version of

the original signal.  The pitch of the recorded material is contained within each grain; the

rate at which the sequence of grains is played back effects the playback speed but does

not effect the pitch .  Conversely, to change pitch without changing duration, one needs

only to change the playback rate of the original (and therefore alter the frequency content

of each grain) and then use the time modification process to restore the sound to its

original duration. 20

This process is an early analog form of what

is commonly known today as synchronous granular

synthesis.  The digital implementation of this

technology has been widely explored and

thoroughly documented.21  A PD implementation of

basic synchronous granular synthesis is executed by

syncgrain~ and pictured in Figure 6.  The original

waveform in wavetable is sliced into a series of

segments, each 20 milliseconds long.  To avoid

                                                
20 Roads’ Microsound,61-62.

21 See Curtis Roads’ Microsound.

Figure 6: granular synthesis
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pops, each grain begins and ends with a smooth fade.  At any one point in time, four

grains are playing simultaneously (this measurement is called grain overlaps); each grain

begins 5 milliseconds after the previous grain began.  Playback speed (and therefore

duration) is controlled via a playback rate index, which effects where each successive

grain begins reading from wavetable, a measurement called the grain increment.  Grain

increment is calculated using the formula 
apsgrainOverl

indextesamplingRahgrainLengtincgr
**

= .  When

replaying without time expansion or contraction, the index is 1 and each grain begins

reading 220
4

1*100,44*02.
=  samples after the previous grain began.  As the index is varied,

each grain starts earlier or later in wavetable.  Regardless of the index, each grain is still

20 ms long and reads through wavetable at the sampling rate.

This method of time-domain granulation is not perfect, however.  The act of

quickly fading in and out—which is effectively what we are doing—is, by definition, a

form of amplitude modulation, and, like other forms of amplitude modulation, the

frequency content of the sound being modulated is effected when the modulation occurs

at audio frequencies.  If grains do not overlap with precise evenness, the rapid fading in

and out that results has the same effect as ring modulation, introducing audible sidebands

that result in buzziness.  Sidebands will be created at the sum and difference of each

harmonic component of the signal contained within the grains and the modulating

frequency, Fm, where durationgrainmF _
1= .  This added frequency content cannot be

removed.22   Furthermore, the relationships between grain length, grain rate, waveform

frequency, and perceived pitch are complex.  A grain length that is incompatible with the

                                                
22 Dodge and Jerse’s Computer Music, 92.
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waveform frequency can lead to distortion ranging from octave doubling to broadband

noise.  Matching the grain length to the frequency of the grain’s waveform can be

exceedingly difficult, especially if the sound being granulated has complex and shifting

spectral content. 23

A far more effective technique involves rapidly taking a series of static snapshots

of the signal’s frequency content using a Fast-Fourier Transform (FFT) or similar

technique.  The snapshots (called “frames”) can then be restored to the original time-

domain waveform using an Inverse Fast-Fourier Transform (IFFT).  If the rate in which

the frames are played back is changed, the frequency content, which is contained within

the individual frames, is not altered; only the length of the sound is effected.  The most

widely used version of this frequency-domain technique is referred to as phase vocoding.

It is largely free from the artifacts that are common in time-domain granular synthesis,

and is thus more widely used.

Phase vocoding is, however, also not perfect.  Depending on the size of the

frames used to transform the signal, either time smearing or frequency smearing, or both,

occur.  Longer frame sizes result in more accurate frequency analyses, but provide less

information about the location of the frequency content in time.  This tradeoff is inherent

in all Fourier-based processing. 24  Furthermore, the windowing function that is used to

isolate each frame for transform (essentially by fading in and out, as in granular

synthesis) has an effect on the resulting snapshot of the window’s frequency content: the

resulting transform is of the convolution of the input signal and the windowing function.

This has the potential to add audible sidebands, mathematically similar to the sidebands

                                                
23 Roads’ Microsound, 93-96.
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potentially created by granular synthesis.  However, by using smooth windowing

functions, these sidebands can be made to be much less problematic, or even

unnoticeable. 25  Both the power and the failings of frequency domain processing, and

especially phase vocoding, are well documented.

From an interface perspective, the phase vocoder is identical to the granulator;

they both have an input for the “playback rate index.”  One needs only to hook either of

them up to the “playback rate index” fader that was used earlier to achieve time-scaling

without affecting frequency content.  Provided one’s hand is fast and accurate enough to

follow the incidental and expressive tempo changes of an ongoing performance, one

could match the playback of a prerecorded electronic part to the performer’s tempo.

Beginning to listen: automated time synchronization

Our performance model so far consists of a performer playing along with a pre-

recorded electronic part.  In order to make the performance more musical, we have

sought to find a way to have the computer part speed up and slow down to follow the

tempo of the performer.  While we have more or less solved the technical problem of

changing the audio’s playback speed without changing its pitch, we are still stuck with

controlling playback speed with an onscreen fader, which is an only slightly updated

version of the lever on Earle Brown’s varispeed tape player.  Its now time to tackle the

larger problem, the task of figuring out a musical way for the performer to communicate

his tempo to the computer.

                                                                                                                                                
24 Roads’ Microsound, 251.

25 Ibid., 246-247.
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In the simplest case, the performer could communicate the current tempo to the

computer by tapping the beat on a MIDI controller such as a foot pedal.  Alternately, we

could choose a specific key or range of keys on a MIDI keyboard and tap the beat there.

Winkler describes a number of ways in which the performer can directly tap out the

tempo for the computer. 26   At their core, all of his patches calculate the tempo using the

formula TTempo ∆= 60  where ∆T is the time in seconds between taps on the key or pedal.

The tempo is expressed in beats per minute.

A simple PD version of this approach

is pictured in Figure 7.  The user taps the

tempo on any key in the top octave of the

keyboard, and the patch calculates and

displays the tempo.  The tempo is recalculated

once every two taps; this allows the user to

update the tempo throughout the piece by two

simple taps on the upper keyboard.

To calculate our “playback ratio index” from our tapped tempo, we need only to

divide the calculated tempo by the expected tempo.  If the two are exactly the same, we

get an index of 1; otherwise, the index is scaled up or down appropriately.

This beat-tapping approach is an improvement over our onscreen fader, since the

performer doesn’t need to remove his hands from the keyboard to enter the tempo.  The

computer has begun to pay attention to what the performer is doing.  The performer,

though, must still think to stop, move to the top of the keyboard, and update the

                                                
26 Winkler’s Composing Interactive Music, 137-155.

Figure 7: Tap Tempo Calculator
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computer’s tempo.  It would be ideal for the computer to be able to extract the tempo

from the human’s performance itself, without the need for the performer to explicitly tap

out the tempo.  This process, known as beat extraction or beat tracking, is no small task,

and extensive research has been devoted to implementing fast and reliable beat tracking

systems.   The many different approaches to beat tracking can be lumped into two general

groups, called “rule-based” and “connectionist” systems.   As we’re about to delve into a

discussion involving a more serious level of programming, it is important at this point to

say a few words about computer program design philosophy, most notably the difference

between “classical” and “connectionist” programming.

Background: Rules versus Neural Nets

Classical Programming

Programs using the “classical,” “symbolic,” or “rule-based” approach work by

creating and manipulating symbols.  As a simple example, suppose we’d like to write a

program to determine whether a note played on a keyboard is loud, soft, or medium.

We’ll assume that the keyboard is outputting MIDI, and that the MIDI data is being

buffered and parsed by some external program.  This external program will be feeding

our program MIDI velocity values for each note that is played.

We’ll do this example in the C programming language, since C is fairly easy to

read and understand even for readers who have never done any programming.  First,

we’ll create some symbols. We’ll need an integer to hold a newly input velocity value,

which we will call NewVelocity.  We will also need a way to store where the divisions

between our velocity types will fall.  We’ll use integers for this, and call them
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LowMediumBound and MediumHighBound.  We’ll give these boundaries some initial

values, ones that will split the 128 possible velocity values more or less in three parts:

LowMediumBound will equal 42, and MediumHighBound will equal 84. We’ll declare

them in C as follows:

int NewVelocity;
int LowMediumBound = 42;
int MediumHighBound = 84;

Now we need to come up with some rules that govern the relationship between

these symbols.  Stated simply, if the new velocity value is less than LowMediumBound,

the velocity type is low; if the new velocity value is greater than MediumHighBound, the

velocity type is high; if it falls between LowMediumBound and MediumHighBound, the

velocity type is medium.  If the velocity equals zero, we should ignore it, since it’s acting

as a note-off and not a note-on.  Finally, we want to wrap this rule in a method, called

determineType that is called whenever a new velocity value is received.  This method

should accept the new velocity value and should print the velocity type.  The entire

program looks like this:

int LowMediumBound = 42;
int MediumHighBound = 84;

int determineType (int NewVelocity){

if (NewVelocity < LowMediumBound)
printf(“Velocity is low \n”);

else if (NewVelocity > MediumHighBound)
printf(“Velocity is high \n”);

else if (NewVelocity == 0)
printf(“Velocity is zero \n”);

else
printf(“Velocity is medium \n”);

return 0;
}
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The PD equivalent of this program is pictured in Figure 8.  Note that this is not at

all a good way to characterize velocity, since our perception of whether notes are loud or

soft is based largely on the musical context in which they are found.  This does, however,

serve as a good example of rule-based

programming.

Connectionist Programming

The other approach to

programming is called “connectionism,”

“distributed,” or “sub-symbolic”

programming.  Rather than using symbols

and rules, connectionist systems use

neural networks, often called neural nets.

A neural net consist of a number of individual units joined together in a pattern of

connections.  The individual units, often called “nodes,” are differentiated into different

types, each of which has a specific role; the most common are input nodes, output nodes,

and “hidden” nodes.

Each input node has an “activation” value that represents something external to

the net.  For example, if the input nodes are keeping track of what notes are currently

being played by a performer, we could have one node for each pitch-class (one for C, one

for Db, one for D, etc.): the “activation” value of each node will be 1 if a note of that

pitch-class is currently being played, and otherwise will be 0.  Each input node sends its

activation value to each of the nodes to which it is connected.  Each of these receiving

nodes calculates its own activation value depending on the activation values it receives

Figure 8: Rule-based Velocity Classifier
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from the input units, and then passes its activation value on through the net.  In this way,

activity at the input nodes will eventually show up as a change in the activation values at

some or all of the output nodes.

The behavior of a neural net is determined entirely by its topography, by the

unique layout of the connections between the various layers of nodes.   Many different

types of neural nets have been created; the most common has every input node connected

to every output node, sometimes with a layer of hidden nodes inserted in between them

(see Figure 9).  This is called a “feed forward” net, since information is only passed from

input to output—there is no backward communication built into the structure of the net.

A net’s topography generally does not change when it’s in use.

Neural nets are capable of

correlating patterns of input with

patterns of output by translating

inputs into patterns of activation

that propagate through the net.

The pattern of activation set up in

a net is determined by its weights,

by the strength of the various connections between the nodes.  An input node will not be

equally connected to every output node, but rather a separate weight on each connection

will scale the input node’s activation level before it is sent on to an output node.  Weight

values may be positive or negative; a negative weight represents an inhibition of the

receiving node by the activity of a sending node. The activation value at each output node

is calculated by summing together the contributions of all input/hidden units: the

Figure 9: Neural Net
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“contribution” of a node is calculated by multiplying the weight of the connection

between the sending and receiving node by the sending node’s activation value.   “This

sum is usually modified further, for example, by adjusting the activation sum to a value

between 0 and 1 or by setting the activation to zero unless a threshold level for the sum is

reached”.27 The pattern of activity at the output nodes is then mapped to an overall output

value.  The node with the highest activation level may, for example, be chosen, and its

number or label will be used as the net’s output.

Having the correct connection weights is the most essential part of any

connectionist system; if the weights are not set correctly, a net will not function properly.

The number of connection weights can be large; a net with 12 input nodes and 12 output

nodes will have at least 144 connections, and even more if net contains hidden nodes.

Luckily, the ability of neural nets to set their own weight values is one of their most

useful and intriguing qualities.  Given repeated exposure to a set of expected patterns and

the ability to correlate those patterns with expected output, neural nets can essentially

“learn their own rules” by setting their own connection weights through the process of

backpropagation.

Backpropagation involves the use of a training set, which consists of many

examples of expected input patterns along with the output that is to be associated with

each pattern.   The connection weights of the net to be trained are initially set to random

values or to zero.  The net’s input nodes are then repeatedly exposed item-by-item to the

exercises in the training set. For each training item, the net’s output is compared to the

correct output listed in the training set.  If they are the same, then the net got the answer

                                                
27 James Garson’s "Connectionism", The Stanford Encyclopedia of Philosophy (Winter 2002 Edition), Edward N. Zalta (ed.).
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correct and nothing more need be done.  If, however, the training set’s answer and the

neural net’s answer are different, the connection weights are adjusted slightly in the

direction that would bring the net’s output values closer to the values for the desired

output.  Specifically, the connections between the input nodes that were activated during

the training exercise and the output node that erroneously received the hightest sum are

adjusted in the negative direction, and the connections between the activated input nodes

and the output node that should have won are adjusted in the positive direction.  After the

adjustments are complete, the net continues on with the next training exercise.  When the

net makes it through the entire training set without getting any answers incorrect, training

is complete.  Aside from being able to associate items from the training set with correct

output, the net many also have learned to generalize to the desired behavior for inputs and

outputs, allowing it to recognize patterns and produce correct output for items that were

not in the training set.

Classical “symbolic” programs attempt to emulate, on some level, the way

humans think about what they think about—start with a group of symbols, do things to

the symbols to change them in some way, follow directions step-by-step.  Connectionist

programming, on the other hand, attempts to simulate human brains on a physical level:

individual nodes and connections can be view as simulations of neurons and synapses in

the brain (hence the term “neural network”).  While the ability of models of this type to

produce complex behaviors, solve intricate problems, and even simulate human

perception is hotly debated, the many incredible successes in this field of programming

have been well documented.

                                                                                                                                                
…continued Graphic used with permission of the editor.
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Rules can be too exclusive, symbols too brittle; faced with the unexpected, with

input that is beyond the anticipated bounds, rule-based systems fail catastrophically.

Connectionist systems, on the other hand, degrade gracefully, and have the inherent

ability to deal with input that is similar to, but not identical to, expected input.  They can,

in a sense, venture a guess when they do not “know” the right answer.  Classical systems

are inherently explicit, with symbols and rules that are spelled-out and obvious;

connectionist systems can understand and operate on patterns that would be very difficult

to express in terms of rules and symbols.   Connectionism provides a model of human

intelligence that is more in line with how we feel about the operation of our own nervous

systems, a theory of artificial intelligence that places the majority of the processing

literally “below” the formation of rules and symbols.  Consciousness and perception at

least feel more immediate than classical systems are capable of emulating.  After all, do

neurons in the optic nerve, for example, really follow an explicit set of rules when

processing information from the eye, or is something more “low-level” going on?

Connectionist models of programming are not, however, without their problems.

From a neurological point of view, neural nets are a vastly oversimplified model of the

brain and its neurons.  Differentiation and specialization among neurons is completely

ignored, as is the fact that the brain must contain a large number of “reverse” connections

that function as it as operating, rather than in a separate “training” stage, as during

backpropagation.  Furthermore, it is obvious that, at some level in human consciousness,

symbols and rules are indeed constructed and used, and neural network models seems ill-

equipped to do this.  Practically, many problems require the structure provided by logic
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and higher reasoning, and neural nets have shown themselves to be especially bad at this

kind of processing.

To be sure, this is not a purely academic debate, even in the context of this paper.

Music theory is concerned with understanding how we understand music.  Interactive

systems must be taught to understand music, in at least a very limited sense, if they are to

be of much use in a performance.  We are attempting, then, to model the behavior of

human musicianship, if not its mechanisms.  The way in which we choose to do that will

have an immense effect on the eventual shape of the outcome.

Beat extraction: existing research

Lerdahl and Jackendoff’s “A Generative Theory of Tonal Music” provided a

starting point for much research in human and computer rhythmic perception, primarily

because it postulated what was perhaps the first cohesive perceptual definition of rhythm,

and clarified the elements of musical rhythmic structure. The authors establish sets of

rules, which lie out formal conditions for establishing hierarchical grouping structures

and describe conditions that determine which of the large number of possible hierarchical

groupings of any passage of music are actually likely to be perceived. 28  Lerdahl and

Jackendoff describe the metrical structure of a piece of as being like a grid, and advance

the idea that music seems to consist of two interacting time scales: the discrete time

intervals of a metrical structure and the continuous time scales of tempo changes,

expressive timing, and temporal “noise” from limitations in the human motor system

                                                
28 Eric Clarke's, "Rhythm and Timing in Music."  in The Psychology of Music, 2d ed., ed. Diana Deutsch,. (San Diego, California:

Academic Press, 1999), 478-479.
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during performance.29  The process of assigning a single rhythmic value to a range of

different note durations, by filtering out the continuous temporal “noise” and focusing on

the metric grid, is called quantization.

Rule-based Beat Extraction

Rule-based quantization systems use knowledge about human rhythmic

perception and preferred metric groupings to quantize the input data, and even to

construct higher-order metric groupings.   One of the most successful of the rule-based

systems is Longuet-Higgins and Lee’s rhythmic parser.   After hearing two notes, the

parser estimates where the next notes will fall.  This estimate is revised in light its

verification or rejection.30  Once beat estimates are verified, the system attempts to move

up the metrical hierarchy by combining the established metrical units into a single

metrical unit.  Meter, therefore, is created from the bottom upward over time, but quickly

becomes a top-down structure that guides the model’s perception of new input.31  The

parser continuously applies Lerdahl and Jackendoff-style well-formedness rules to update

and improve the parser’s concept of meter.

Rule-based systems have some inherent flaws that need to be overcome for them

to be of use in an interactive music system.  These systems generally have problems with

irregular metrical structures such as syncopations and upbeats, as these are exceptions to

the basic metric rules and are difficult to express algorithmically.  When rule-based

systems are faced with input that doesn’t conform to expectations, they break down

                                                
29 Peter Desain's  "A connectionist and a traditional AI quantizer, symbolic versus sub-symbolic models of rhythm perception."

Contemporary Music Review 9, Parts 1 & 2 (1993): 56.

30 Longuet-Higgins and Lee's   The Perception of Musical Rhythms (1982): 118-119.
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rapidly.  When faced with rhythmic ambiguity, rule-based systems will generally not

produce a “best guess” answer—they will, instead, produce no answer at all.  Finally, and

perhaps most importantly, many rule-based systems, including Longuet-Higgins and

Lee’s rhythmic parser, operate best when they have access to a piece of music in its

entirety—in other words, not in real time.  This limits their ability to participate in a live

musical performance.

In light of these problems, and because of the fact that many researchers feel that

the processes involved with human rhythmic perception are more immediate and

automatic than models such as the Longuet-Higgins and Lee parser suggest, many beat

tracking systems take a different approach, one that is grounded in connectionist design

philosophy.

Connectionist Beat Tracking

Perhaps the most successful, and certainly the best documented, connectionist

beat tracking system is Desain and Honing’s Connectionist Quantizer.  This system

operates on inter-onset intervals (IOI), which is the time lapse between the start of a note

and the start of the previous note.  A number of cells store recent IOI values; the cells’

values are gradually increased or decreased to bring them closer to small integer

multiples of each other.  The quantizer’s output is a set of “expectancy curves” that

predict when new notes will occur; these curves are representations of the metric

structure of the music.32

                                                                                                                                                
31  P. Desain and H. Honing's "Computational models of beat induction: the rule-based approach."     Journal of New Music

Research 28, no. 1 (1999): 29.

32 Desain and Honing's The Quantization of Musical Time: A Connectionist  Approach  (1989): 57-60.
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A different sub-symbolic approach is taken by Large and Kolen.  They view

repeated metric pulses as a form of sinusoidal oscillation, and see beat tracking as the

process of tracking an oscillator’s period and phase.  Their system consists of a number

of adaptive oscillators that “fire” when they are sufficiently activated by an input signal,

resulting in a series of pulses that approximates the input’s metric structure.  Each

oscillator’s phase is effected by the input signal only during parts of the oscillator’s cycle;

in this way, each oscillator’s cycle is reinforced by new input patterns that are similar to

previous input patterns.  Petri Toivianinen’s Interactive MIDI Accompanist is based on

Large and Kolen’s system of oscillators, but contains several modifications that makes it

more useful for live performance applications.  First, the output of the system is

smoothed to remove abrupt changes in output period that would be disruptive to an

ongoing performance.  More importantly, it attempts to combine and coordinate

individual input notes into larger groups before passing them onto the oscillator network;

the reduces the overall effect of very short notes and allows the system to track a larger

metric unit.33

The sub-symbolic nature of connectionist quantization systems is quite powerful;

the input of a few notes will, regardless of tempo or expressive timing deviations, create a

projection of the metrical scheme that will be refined with each new input event.  The

system is very context-dependent, so syncopations are easily handled.  Ambiguous or

unfamiliar input causes the system to attempt to guess, and even, in some systems, learn

the correct output for newly discovered patterns of input.  The cost of this increased

power and flexibility is paid in computational load: connectionist systems are generally

                                                
33 Rowe’s Machine Musicianship, 130-135.
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more computationally intensive than rule-based systems.  Nonetheless, many of them are

still fast enough to operate accurately in realtime.34

Summary: The challenges of beat tracking

Successfully extracting a tempo from an ongoing human performance is indeed

no small feat.  To accomplish this goal, a beat tracking system must:

1. be able to understand and incorporate a variety of temporal multiples,

divisions, and subdivisions of the beat (unlike the beat-tapping approaches

described above, which require the user to explicitly and exclusively tap

the pulse);

2. understand and smooth over the temporal “wow and flutter” that is

inherent in all human performances of music;

3. be able to distinguish small, unintentional tempo deviations from larger,

more directed expressive tempo changes, and should be able to accurately

track the latter;

4. operate without an internal representation or score of its expected input;

5. work in realtime.

Criteria 1-3 are necessary for any system that will be dealing with real human

performance input.  Criteria 4-5 are necessary for the system to be able to participate in

an ongoing performance of improvised or partially improvised music.

                                                
34 Desain and Honing's The Quantization of Musical Time, 60-65.
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Beat tracking in PD

I have constructed a quasi-connectionist beat extractor that is loosely based on the

research of Desain and Honing, Robert Rowe, and others.  It is native to PD, utilizing

ZEXY’s powerful matrix objects to simplify calculations for realtime operation.  It

accepts a stream of MIDI notes as input, and outputs a sequence of BANG messages on

the beat, as well as the current beat period in milliseconds.

The beat tracker executes the following steps, described in detail below, each time

new input is received:

1. MIDI input data is parsed, and everything but Note On messages is

discarded;

2. Note-On Messages that come extremely close to a previous Note-On

Message are discarded;

3. The Inter-onset Interval (IOI), the time between the new Note-On and

the previous Note-On, is calculated;

4. The new IOI is compared to the current beat theory and the metric

subdivision of the theory to which the new IOI most closely matches is

determined;

5. The new IOI is scaled to its quarter-note equivalent (e.g. an IOI

thought to be an eighth-note is multiplied by 2);

6. The quarter-note version of the new IOI is added to the tempo matrix,

and a new beat theory is calculated;

7. The new beat theory is output, and the metronome generating the

BANG messages on every beat is updated with the new tempo.
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Figure 10 is of the parent patch of my PD beat extractor, called TempoTracker.

MIDI data enters at the top of the patch; stripnote removes note off messages and passes

note on messages.  Notice that, as Note-Off messages are discarded, this tracker does not

consider actual note durations, but rather works with Inter-onset Intervals.

Figure 10: TempoTracker Parent Patch
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The chordtimer subpatch, pictured in Figure 11 handles note on messages that

come extremely close to each other.  Such notes may be members of a chord, part of a

trill, or accidentally “slipped” notes, but it

is unlikely that they will be intentionally

played rhythmically significant notes.

Chordtimer outputs a BANG when a

new note on is received only if another

note on has not been received in the last

100 milliseconds. A long trill, therefore,

will cause a BANG to be generated only

at the very beginning of the trill.  In the

simplest case, a series of single notes is

input into chordtimer, each causing a

BANG to be sent.

At the core of the tempo tracker is a tempo matrix, called mtx 10 11.  It is a 10x11

matrix that PD manages as a single, multidimensional data structure.  Each row of the

matrix holds a different IOI; since there are ten rows, the matrix holds the most recent ten

inter-onset intervals.  Guided by a counter object, the matrix cycles through its ten rows

sequentially, writing the new IOI to the next row; when row ten is reached, the counter

resets to 1 and the next IOI is written to the first row of the matrix, replacing its previous

contents.

Figure 11: chordTimer
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Each of the eleven columns of the matrix holds the value for a different metric

multiple, expressed in milliseconds; the metric multiples include 6
1 , 4

1  3
1 , 2

1 , 3
2 , 4

3 ,

1, 2
3 , 2, 3, and 4.  These metric units are casually referred to by the names of the

corresponding rhythmic notational unit, such as 1 = quarter-note, 2 = half-note, and so

on.  While this nomenclature could possibly be accurate, the actual musical value of each

of the metric multiples depends on several factors, most notably the musical value of the

notes played when the tracker was initialized.  The initialization process is described in

detail shortly.

With each new input note, an entire row of the matrix is filled, using multiples of

the calculated IOI. The matrix therefore contains a great deal of redundancy, as, given the

value of one column, one could easily use multiplication to derive the value of the other

columns.  However, having the all the metric values calculated is necessary, as we shall

wish to compare them to choose which one we wish to use to drive the output, and it is

more efficient to calculate them inside the matrix.

Every time a new input note is received, the contents of the matrix are sent to the

mtx_mean object, which calculates the arithmatic mean of each column, thereby

calculating the average value of each metric unit over the last ten input notes.

When a new note is received, its IOI is calculated, and is sent to the subpatch

gravity, which is shown in Figure 12.  This subpatch compares the new IOI to each of the

average metric values that were calculated by the mtx_mean object.  The new IOI is

“slid” into the metric “bin” to which it is closest.  Then, depending on which bin it was

slid into, the new IOI is scaled so that it is the quarter note equivalent of the new IOI.  If,
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for example, the new IOI is closest to the average value for the half-note unit, it is

multiplied by .5.

Figure 12: Gravity Subpatch

The gravity subpatch also handles two special cases: very long notes, and very

short notes.  Notes that are shorter than one-eighth of the current beat theory, equal to a

thirty-second-note or less, are assumed to be members of a trill that somehow made it

through chordtimer.  The IOI is discarded.  In the case of notes that are farther apart than

a dotted whole-note, the assumption is made that the performer has finished a section and

has begun playing another; a BANG is sent to INIT, which causes the tempo tracker to

reset itself and wait for new input.  Similarly, the subpatch detectSilence waits for six
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beats, using the most recently calculated tempo.  If no new input has been received in six

beats, it is assumed that the performer has fallen silent, and the tracker is reset.

Once the quarter note-equivalent of the new IOI is calculated, it is passed to the

subpatch notevalues, which calculates the values of all the metric units based on the new

IOI’s quarter note equivalent.  Notevalues also formats these values by attaching matrix

row and column numbers.  The formatted values are then added to the next available row

of the matrix.

After the new data has been added to the matrix, the matrix is sent to the

mtx_mean object, and a new tempo is calculated.  The new values of each metric multiple

are sent to the selectOutput subpatch, which chooses one of the metric units to drive the

output.  Initially, the “quarter-note” (x1) value is used; if this moves outside the

acceptable range of tempos, the subpatch can “shift” to using a different metric unit to

drive the output.  If, for example, the beat period is less than 400 ms, the current metric

unit is too fast to be the basic pulse; selectOutput “upshifts” and begin using the “half-

note” (x2) metric value to drive the output.  There are two possible “shifting patterns:”

the “simple” pattern can shift to the x1, x2, x4, x 4
1 , and x 2

1  metric units, while the

“compound” pattern can shift to x1, x 2
3 , x3, x 3

1 , and x 3
2  units.  As their names imply,

the simple pattern is designed for use with simple meters and the compound pattern

works better with compound meters.  The user must currently specify which shifting

pattern to use by sending a 1 (simple) or 0 (compound) message to s metertype (the

default type is simple).  Whatever the chosen metric value it is used to drive the output by

setting the rate of a metro object, which outputs a BANG once every beat.  The beat

period of the selected metric unit is also output from the tracker.
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The subpatch init handles the special operations involved with turning the tracker

on and off, which includes turning the output metronome on and off, as well as

initializing and resetting the tempo matrix.  The tracker takes three input notes to be fully

initialized, but it begins outputting a beat after two notes.  Most importantly, when init is

sent a BANG from any patch in PD, it causes the tracker to cease output and reset.

The first IOI is ignored, since it will be the time since the tracker was last used or

loaded.  The second IOI (the time between the first and second notes) is the first valid

IOI; it is used to fill all ten rows of the matrix, allowing an “average” to be taken, causing

all subdivisions to be calculated, and allowing output to begin.  The third IOI is placed in

the first row of the matrix, and normal operation begins.  The second IOI is therefore very

important, for two reasons.   First, the entire matrix is filled with data based on this IOI;

this allows the mtx_mean, which normally averages the last ten IOI’s, to start outputting

without having to wait for ten notes to pass.  The result, however, is that remnants from

this second IOI will be inside the matrix (and will effect calculations) until ten more

notes have been played.  More importantly, this first IOI is assumed to be the x1 metric

subdivision.  All future input will be categorized around this IOI.  While the selectOutput

reduces this effect by choosing other metric units to base output on, the fact remains that

the tracker’s “perception” of future input is greatly shaped by this first valid IOI.
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Performance comparison of beat tracking systems

A detailed analysis of the performance of tempoTracker was performed, using two

MIDI test files containing J. S. Bach’s Jesu Meine Freude and Scriabin’s Prelude in C as

test material.  The test MIDI files were generated by a human pianist playing in time with

a metronome, so they contain the usual amount of slight human rhythmic inaccuracies.

The Scriabin example also contains a small amount of rubato, and a slight ritardando

near the end of the excerpt.

Overall, the tracker performs very well.  In both examples, the tracker begins

tracking the eighth-note pulse, and, after several beats, “upshifts” and tracks the quarter-

note pulse.  In the Bach example, the tracker continues tracking the quarter-note pulse,

catching every downbeat until the end of the example.  Similarly, in the Scriabin

example, the tracker follows the quarter-note pulse and smoothly tracks the ritardando at

the end of the example.  In both examples, the tracker’s beat is occasionally ahead of or

behind the human’s beat, especially during the rubato in the Scriabin example, but this

inaccuracy is slight and never lasts longer than two or three beats.

In the Bach example, the tracker manages to find and follow a rhythmic unit, and

to “upshift” to find the basic metric pulse.  In the Scriabin example, on the other hand, the

“upshift” did not result in the tracker finding the basic metric pulse, but rather a higher-

order, somewhat spurious, subdivision.  Most musicians would “feel” the Scriabin piece

in groups of five eighth-notes, but the tracker follows it in groups of two eighth-notes.

As a result, the tracker’s beat is on the “and” of every other perceptual downbeat.  The

tracker, having identified and followed rhythm, is unable to understand it in terms of
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meter, largely because it does not have access to the other elements of the music, such as

chord type and dynamics, that help human’s extrapolate a meter from a number of

possible rhythmic groupings.  However, the tempoTracker does manage to find and track

a basic rhythmic unit, and does so rather well, even in a complex rhythmic environment.

The output of tempoTracker during these tests in both raw and analyzed form is

included in the appendix of this paper.  The test MIDI files are included on the CD-ROM

appendix.
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4. Machine Decision Making

Pseudorandom Number Generators

Our system to this point has consisted of a computer replaying a wavetable, the

playback speed of which is controlled by a realtime tempo tracker.  While this does

represent a more "intelligent" behavior than the tape player we started with, it is not a

particularly innovative use of a computer.  It is, in fact, only a slight improvement on the

Tempophon, a technology that is over fifty years old.

While we have managed to increase human→computer Influence, the amount of

computer Participation is still minimal.  While the computer has begun to listen, it is not

playing, in the sense that it is not making decisions about when and how sound will be

produced.   Computers can be programmed to make these decisions, and the outcome can

be based, to a greater or lesser degree (depending on the amount of Influence at the time),

on the activity of the human performer.

As an illustration of a basic case of computer decision making, the computer is

presented with a simple philosophical question: yes or no.  The outcome of this choice is

not to be based on any outside factors (there is no Influence) and the computer has no

reason to pick yes over no (there is no weighting).    In each such decision, the computer

picks one outcome or the other in a seemingly random fashion.  The computer is,

essentially, flipping a coin.  Activities such as these, which involve chance or

randomness, are theoretically impossible on a computer, which is, by definition, entirely

algorithmic and non-random.  We can, however, simulate randomness using an algorithm

known as a pseudorandom number generator.
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Random is PD's native pseudorandom number generator.  It accepts an

initialization argument of an integer, n, and whenever it receives a BANG

message it outputs a randomly chosen integer between 0 and n-1.  To

answer our basic yes-no question, we could use a random 2 object, say that

1=yes and 0=no, and BANG the object repeatedly.  Yes and no will appear

more or less the same number of times.  This is demonstrated in Figure

13.

A more musical example, depicted in Figure 14, consists of a

Random picking MIDI note numbers.  The metro 500 outputs a BANG

every half second, causing the random 24 to pick a number between 0 and 23; this range

is then shifted up to 48-72 by adding 48 to every randomly picked

number.  This patch now randomly plays a note from the two middle

octaves of the piano (note numbers 48-72) every half of a second.

A more sophisticated use of random is shown in Figure 15.

Here, three wavetables have been loaded with short samples of sound.

The random 3 is used to randomly pick and play one of the

wavetables.  When the wavetable being read is finished, the sfplay~

outputs a BANG, which is routed to the random, causing it to start

playing another wavetable.  In this way, the patch plays through the

samples in random order.

Figure 13: Yes-No

Figure 14: Random Notes
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As a final example, we could use a random object to select rhythmic patterns and

output the corresponding durational values at the correct times.  Whenever a pulse is

received, patternGen, pictured in Figure 16, randomly selects from ten rhythmic patterns,

such as eighth-note eighth-note or half-note.  At the heart of patternGen is a number of

“pattern” subpatches, one of which is pictured in Figure 17.  This subpatch serves two

functions.  First, it calculates the duration of one or more metric subdivisions based on

the beat period, which is received in the patch's right inlet.  Secondly, when it receives a

BANG in its left inlet, it outputs the calculated durations with the appropriate metric

timing.  For example, the pictured subpatch outputs an eighth-note eighth-note pattern.

First, it calculates the duration of each eighth-note as being half of the current beat

period: if the beat period is 500 ms, each eighth-note should be 250 ms long.  Then, when

a BANG is received, the duration for the first eighth-note is output immediately.  The

patch then waits for the length of the first eighth note, and then outputs the duration for

the next note.  So, when a BANG is received, the example patch will output 250, will

then wait 250 ms, and finally output 250 again.  The “valve” section of the subpatch

Figure 15: Playing Random Samples
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closes a spigot that prevents new patterns from being started before the current pattern is

finished.

Weighted random number selection

Returning to our yes-no example, suppose that we want the

computer to answer "yes" more often than "no."  More specifically,

say that we want one "no" for every four "yes" answers.  This is

called weighting, and is easily accomplished in PD.  In Figure 18,

the output from the random 10 is sent to a moses 8 object, which

sends any input less than 8 out its left outlet, and any input greater

Figure 18: Weighted Yes-No

Figure 16: patternGen Figure 17: pattern subpatch
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than or equal to 8 out its right outlet.  The outlets are then connected to produce a 1 or a 0

respectively.  If we were to BANG the random one hundred times, we would expect that

the answer would be "yes" roughly 80 times.  The weighting can be changed dynamically

by resetting moses split point, and more complex weightings could easily be achieved

using multiple moses objects in series.

Aleatoric Music

Music involving elements of randomness, indeterminacy, and chance, often called

Aleatoric music, has a long and full history.  A few brief examples will illustrate the

variety and power of musical indeterminacy.  John Cage, for example, used a process

derived from the I Ching, in which he repeatedly flipped coins, to pick the contents and

arrange the structure of his Williams Mix (1952) from pieces of taped sounds.35  For

"HPSCHD" (1969) Cage and Jerry Hiller wrote computer programs called ICHING,

DICEGAME, and HPSCHD, which assembled musical scores and taped sounds by, in

part, randomly swapping out measures of Mozart's "Musical Dice Game" and substituting

measures from works by Cage, Beethoven, Chopin, Schumann, Schoenberg, and Bach.

The resulting tapes and scores are played back, with each performer having his own self-

directed starting time and tempo, and with multiple tape decks playing simultaneously. 36

Alternately, Curtis Roads used a computer to randomly pick the frequencies and other

                                                
35 Chadabe’s Electric Sound, 55-56.

36 Ibid., 274-277.
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characteristics of the hundreds of sonic grains per second that make up the sound events

in "Half-life" (1999). 37

These examples clearly illustrate the musical potential of randomness.  However,

while simply picking numbers at random can be useful, it is sometimes inappropriately

uncontrolled and overly broad.  After all, most composers and improvisers do not work

by randomly picking notes from the set of all possible notes (although someone may at

some point have attempted this).  Instead, composers often start with a smaller set of

pitches, a key, chord, or scale, and work from there.  In a situation where more control is

needed, when the output needs to be more constrained, approaches other than random

number picking are needed.

Several helpful random-order object have been ported from Max to PD via the

Cyclone library, namely the objects called drunk and urn.  Drunk allows the user to set an

upper limit and a maximum step size; when banged repeatedly, the output "walks"

randomly around between the

upper limit and zero, with no

leaps bigger than the set

maximum step size.  As a tool

for generating sequential note

numbers for melodies, drunk

generates much more

traditionally coherent output

than random.

                                                
37 Roads’ Microsound, 309-310.

Figure 19: Random Array Reading
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Urn, on the other hand, holds the numbers 0 - n and outputs them in random order,

one after the other, without repeating any until all of the possible numbers have been

output.  This type of serial sequence of values could easily be used to control any (or all)

parameters of an unfolding stream of sound.

Suppose one wants the constrained random output to consist of a more specific set

of numbers than 0 - (n-1).  One might, for example, want the computer to randomly pick

notes from a specific chord or scale.  To accomplish this, one could couple random, urn,

or drunk with an array of numbers.  The array will contain the values we wish to choose

from (the note numbers of a scale, for example) and the output of the random-order

object will act as the index to the array.  This is depicted in Figure 19.  What's more,

since PD's array objects are both a data structure and a graphical interface, the user can

change the contents of the array, and therefore the values present in the output, in

realtime, simply by clicking and dragging.

Sequential constraint: Markov chains

Returning to our philosophical yes-no question,

suppose we want each answer to depend partly on the answer

that came before.  Suppose, for example, we want the answer

to change 75% of the time; if the computer's last answer was

"yes," its next answer should be "no" 75% of the time.

Clearly, the static weighting described above will not work

for this situation, since the weights need to change depending

Figure 20: Markov Chain
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on the last output.  Figure 20 pictures a patch designed to handle this situation; the

weights are reset according to the patch's last output.  This is known as a Markov chain.

A Markov chain consists of a series of states, and of transitions between these states:

The state at the beginning of a transition is the source; the state at the end
is the transition's destination.  In a Markov chain, each successive
destination of one transition becomes the source of the next.  The behavior
of the chain is captured by a table of transition probabilities, which give
the likelihood of any particular destination being reached from some
source. . . The number of pervious states used to determine the net
destination state is called the order of the chain.  Chains that use only the
source state to determine a transition are called first order; chains that use
the two most recent states to find the transition to the next are second
order, and so on.38

As the number of possible output values grows, maintaining and loading the

appropriate weighting for all of the different possible output values becomes

unmanageable.  Luckily, PD has an object called prob, again ported from Max to the

Cyclone library, which is designed to automatically perform this exact task: it maintains

probability tables for the construction of first-order Markov chains.  To construct the

probability tables, it accepts three-item lists in the form [State 1, State 2, Probability],

where State 1 and State 2 are possible values, and Probability is the percent of the time

that State 2 should follow State 1.  Prob accepts integers that tell it what the last output

(State 1) was; when a BANG is received, prob makes a constrained random choice

between the possible State 2 values that have been specified by consulting its probability

tables.  The new State 2 value is output.  In the simplest case, this output is fed back into

the input, thereby becoming the next State 1 value.  If prob encounters a State 1 value

                                                
38 Rowe’s Interactive Music Systems, 188.
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that it has no probability information for, it resets to a default value previously specified

by the user.

PD also contains another object, called anal, which automates the construction of

probability tables for use by prob.  It accepts a series of integers and outputs the three-

item lists described above that correspond to the input it has received.  These lists can

then be sent to prob for use in the construction of Markov chains.

I have created a group of object abstractions, called OSCAR2, which facilitates

the use of first-order Markov chains for the generation of melodic material.  OSCAR2

contains objects for analysis of melodic material both before a performance and during it,

and objects for the creation in realtime of Markov chain output based on those analyses.

OSCAR2 is the much-streamlined cousin of OSCAR,39 a package of objects that I built

for the creation of first- and second-order melodic and harmonic Markov chains.

OSCAR and its extensive

HTML documentation is

contained in the CD-ROM

Appendix to this paper.

OSCAR2's basic

Markov-based melody

generating patch,

blankHands, is pictured in

Figure 21.  The object can

accept one initialization

                                                
39 My OSCAR bears no relation to Peter Beyls’ system of the same name.

Figure 21: blankHands



Rippin 54

argument, the name of a .coll (collection) file that contains previously compiled analysis

information, which is loaded into the prob at loadtime.  If no initialization argument is

given, no analysis data is loaded.  BlankHands has three inlets.  The right inlet accepts

new analysis info in the form of three-item lists, as described above.  These lists are

passed directly to the patch's prob object.  The patch's middle inlet accepts the note

number of the last note that was output by the system (referred to a State 1 above).  As

mentioned, the most basic configuration would have the blankHands‘ output being fed

directly back into the middle inlet as the last output.  However, having this feedback

occur outside of blankHands allows additional processing to being inserted between

blankHands‘ output and the system's output; this processing could possibly result in

changes in the output.  Since the last note output is fed into blankHands from the outside,

the patch can be kept "in the loop" of any output changes that occur.

Once a note is entered into the middle inlet, it goes to the subpatch shiftanddiff,

shown in Figure 22, which calculates the melodic interval between the most recent note

and the one that came before it.  The interval

is measured in half-steps, and is folded into a

two-octave range, from descending octave (-

12) through ascending octave (12).  Zero (0)

is a unison: the same note played twice.

Since prob only accept state values that are

greater than or equal to zero, 12 is added to

the interval, making the range of state values

sent to prob 0-24.

Figure 22: shiftanddiff
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Lastly, blankHands accepts BANG messages in its left inlet, which cause the

patch to output a new note.  The BANG is sent to prob, which generates a new interval by

consulting the probability tables specified by the most recent note input into blankHands‘

middle inlet.  Twelve is subtracted from this interval (to compensate for adding twelve to

all of prob's input), and the result is added to the number of the last note output (the last

note received in the middle inlet).  The resulting note number is output from the patch.

The remainder of blankHands handles housekeeping tasks associated with

initialization.  The .coll file specified in the initialization argument is loaded, the last

output note value is set to note number 60 (an arbitrary choice for a necessary decision—

one must start somewhere), and the default reset state for the prob object is set to 12;

thus, if prob encounters an interval that it has no data for, it outputs a 12, which is a

Figure 23: MIDIEars
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unison.  If no initialization argument was given, no .coll file is loaded, and blankHands

starts with an empty prob object.

The OSCAR2 object called midiEars, pictured in Figure 23, automates the

creation of analysis data before a performance.  The patch accepts melodies on up to four

MIDI channels simultaneously; is assumed that the input is polyphonic or poly-melodic,

with each voice on a different channel.  The incoming data is transformed into a string of

melodic intervals by shiftanddiff, in the range described above, and stored in coll objects.

After all of the MIDI data has been fed into midiEars, the user hits "write."  This causes

the coll objects to sequentially dump their strings of melodic intervals into the anal object,

which outputs three-item probability lists, as described above.  These lists are captured in

another coll object, and are saved to a user-specified .coll file for future use in a

blankHands object.

A similar object, runtimeEars, is designed to automate the analysis of a melody

during a performance.  It accepts a single stream of MIDI note numbers in its left inlet.  It

performs the same analysis as midiEars, except that is does it entirely in realtime.  The

probability lists created by prob are sent directly out of runtimeEars‘ outlet, where it can

then be routed to a blankHands object for use in creating melodies.  Simultaneously, the

lists are sent to a coll object, so that they can be saved for future use.  CLEAR, WRITE,

and SAVE messages are accepted in runtimeEars‘ right inlet; these cause the coll to clear

its contents, save its contents to a user-specified file, and save its contents to a default

file, respectively.

Using the patches described above, we can construct a rudimentary melody

generating system.  PatternGen can supply the rhythm, with the tempo being controlled
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by tempoTracker, and blankHands can provide the melodic material.  Two versions of this

idea are presented in Figure 24 and Figure 25; the first version loads blankHands with a

melodic analysis of several dozen Bach inventions and sinfonia, while the second version

gets its analysis information by listening to the user's melodic input.  Version 1 contains

no more human→computer Influence than the varispeed wavetable player-follower that

we started with, but it does allot the computer much more Participation, since the

computer is actively deciding when and what notes to play.  Version 2, on the other hand,

involves, in addition to the increased Participation, much more human→computer

Influence, since the computer's melodic output is based on analysis of the human's

playing.  From the standpoint of interactivity, this is our most developed system yet.

Figure 25: Example 2Figure 24: Example 1
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5. Extended Influence: Chord Identification

The Need for More Context

Thanks to our realtime tempo tracker, our computer system is somewhat aware of

the human's sense of musical time.  The computer is not, however, at all aware of what

the human is playing, in that it has no general musical sense of what is going on.  It can

look at what's happening on a note-by-note basis (and does so, to gather material for

Markov chain melodies) but it lacks a more general sense of context that is needed for

making music.  Composers and improvisers do not generally think in individual notes,

but rather in broader strokes, starting with basic chords, scales, and keys to begin their

musical output and to keep it centered and coherent.  It would be helpful for our

computer to have a similar sense of context.

Giving the computer the ability to identify the chord that is being played by the

musician would be a good first step toward achieving a sense of musical context.  Any

deeper sense of context (such as scale or key) could be built upon the reliable

identification of chordal structures.

Like tempo tracking, chord identification proves to be no small task.  Much

research has been done in this area, and, as in tempo tracking, most systems that have

been developed are either rule-based (symbolic) or connectionist (sub-symbolic).  Both

approaches once again have strengths and weaknesses that effect their ability to work in a

live musical performance.
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Rule-based systems

Robert Rowe discusses and implements several rule-based root and chord

identifiers in Machine Musicianship.40  The most simple and general identifiers are

context-free: that is, they look only at the pitch information immediately available while a

chord is being played, without reference or acknowledgement to the chord's surrounding

rhythmic or tonal context.

Chord members are first reduced to pitch-class using a modulo 12 operation

(divide by twelve, throw out the dividend and keep the remainder).  All C's, for example,

become 0, since MIDI notes 48, 60, 72, 84, and all other C's equal 0 after a modulo 12

operation.  Multiple occurrences of the same pitch-class are therefore reduced to a single,

repeated note, and chord voicing is effectively eliminated from consideration of a chord's

root and type.

A twelve-address pitch-class array is maintained to keep track of the pitch-classes

that are present in a chord.  A 1 is placed at a pitch-class's location in the array if a note of

that pitch-class is present; otherwise, the pitch-class's location in the array is reset to 0.

The number of chord members can be easily determined by summing the contents of the

array.

The most basic chord identifier described by Rowe relies primarily on table

lookup for determining chord root and type; this requires a complete listing of all possible

chord types.  The number of table entries is greatly reduced when the table lists chord

intervals rather than actual pitch classes.  There are, for example, two hundred and twenty

distinct three-note chords, but these can be expressed using only fifty-five possible

                                                
40 Rowe’s Machine Musicianship, 17-60.
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combinations of two intervals.41  Counting chords with between two and eleven

members, there are 2,048 possible types of chords when they are expressed

intervallically.

Once the chord members are converted from pitch to pitch-class, a method is

called that calculates the interval of each chord member above the first active pitch-class

in the array.  This algorithm then compares the measured intervals to each successive

entry in the lookup table.  When a match is found, the chord type corresponding to that

entry in the table is output, and the root is calculated.  For example, if pitch classes 2 (D),

5 (F), and 11 (B) are turned on (set to 1 in the array), the measured intervals are [3 9],

which is a minor chord in first inversion.  A minor chord in first inversion has a root of 9

(A) when pitch class 0(C) is the lowest chord member (this information would be stored

in the lookup table).  Since the lowest member in this chord is pitch class 2 (D), 2 is

added to the default root of 9, resulting in 11, so the chord is B minor in first inversion.

The lookup table in Rowe's chord identifier contains only the most common chord

types (mostly three- and four-note chords).  When a chord that is not listed in the lookup

table is encountered, an algorithm is called that removes the most dissonant chord

members one by one until the chord matches an entry in the lookup table.  A member's

"dissonance" is calculated by summing the member's intervallic relationship (expressed

in half-steps) with all other chord members; the member with the smallest total intervallic

measurement is considered the most dissonant, and is removed.42

Rowe implements a separate algorithm that independently identifies a chord's

type once its root has been determined.  It works by looking for minor and major thirds

                                                
41 Rowe’s Machine Musicianship, 21.
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stacked above the root.  The algorithm looks for a third, then a fifth, then a seventh, and

so on, until all chord members have been identified.  Chord type is then expressed as a

function of its members, e.g. D with a minor third, a perfect fifth, and a minor seventh.

This algorithm can be coupled with a separate root identifier (such as the one described

above) to complete successful chord identification.43

More complex rule-based chord identifiers begin to model human grouping and

separation mechanisms, and therefore begin to depend partially on the context in which a

chord is found.  David Temperley's Serioso Music Analyzer uses preference rules

(similar to those proposed by Lerdahl and Jackendoff, as discussed earlier) to identify and

correctly spell chords and larger harmonic areas.  These preference rules describe

preferred root relationships, as well as the influence of metric relationships on chord

identification.  One rule states, for example, that new chords tend to be started on strong

beats.  Another says that roots of nearby chords tend to be close to each other on the "line

of fifths" (in other words, they tend to be "closely related" in the strong theoretical

sense).44  Richard Parncutt extends this psycho-musical model further by referring to

more contextual information such as chord voicing and underlying tonality to help

determine chord roots.  Parncutt's model is deeply rooted in research in Music Cognition,

and includes such psychoacoustical concepts as virtual pitch, pitch salience, and root

stability.  Parncutt and Temperly's systems work primarily to identify a chord's root; they

                                                                                                                                                
42 Rowe’s Machine Musicianship,  38-89.

43 Ibid., 43-44.

44 Ibid., 45-47.
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then calculate additional information about the chord, such as its mode or type, using the

thirds-stacking method described above.45

A connectionist chord root identifier

I have developed a sub-symbolic chord route identifier called chords.  It uses a

neural net to determine the root of arbitrary chords in realtime.  The chords can be

blocked or arpeggiated.  Once the root is identified, the basic chord type (major, minor,

diminished, or augmented; diminished, minor, major, or augmented seventh) is identified

using a rule-based stacked-thirds approach similar to the one described above.

Figure 26: chords parent patch

                                                
45 Ibid., 49-60.
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The parent patch of the chord identifier is pictured in Figure 26.  MIDI note data

enter at the top of the patch.  The first step in root identification is to reduce chord

members to pitch-class, and to construct a way to keep track of which pitch-classes are

currently being played; this is achieved in the top portion of the parent patch.  The on-off

object, pictured in Figure 27, attaches a leading 1 to all note-on's, and a leading 0 to all

note-off's.  The following route object directs all note-on's to the left, and all note-off's to

the right.  In either case, the messages move into a % 12 (modulo 12) object; this converts

all pitches from MIDI note number to pitch-class, where all C's = 0, Db = 1, etc.  As

mentioned above, this allows all notes to be treated with octave equivalence, which

removes multiple occurrences of the same pitch class and chord voicing from

consideration by the chord identifier.

The subpatch dblchr, short for

double-checker, is pictured in Figure

28.  This patch ensures that a pitch-class

is considered "active" when one or more

notes of that class are playing, and is

turned to "inactive" only when all notes of that class have stopped playing.  Note-on's

enter the left inlet, note-off's come in the right inlet (from their respective modulo

objects).  The dual select objects send a BANG to the correct pccount (pitch-class count)

object when a note message is received; note-on's cause a BANG to be sent to the

pccount’s left inlet, note-off's bang the pccount’s right inlet.  Pccount, pictured in Figure

29, keeps a running count of the number of activated notes of a single pitch-class.  There

is one pccount object for each pitch-class.

Figure 27: on-off
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Figure 28: dblchr (double-checker) subpatch

Figure 29: pccount subpatch

For each pitch-class, the active note count is output from pccount into a >0 object.

If the note count for that pitch-class is greater than 0, a 1 is output; otherwise, a 0 is

output.  The result is sent through a change object, which passes the input only if it is

different from the previous input.  Therefore, although pitch-class count can change

rapidly as chords are played, output will only be sent from change when the pitch-class

changes to inactive or active; repeated 1's and 0's are filtered out.  Finally, the output
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from each change is sent to a s pccount (short for send pitch-class state) object, which

broadcasts the state of that pitch class to anywhere that has a r pccount (short for receive

pitch-class state) object.  There is one s pccount object for each pitch-class; they are

differentiated by their trailing integer, so the state of pitch-class 0 is sent out via s

pccount0, pitch-class 1 is sent out via s pccount1, and so on.  A complete set of r pccount

objects exists inside the GUI toggles on the chords parent patch, providing the user with

a graphic representation of pitch-class activity (a box is checked when its pitch-class is

active).  The status of each pitch-class is also sent to the neural net, which has one input

node for each pitch-class.

Output nodes

The bulk of the chord identifier's processing, including the neural net, is contained

within the rootnet subpatch, pictured in Figure 30.  In the most basic terms, rootnet

consists of input nodes

(one for each pitch-

class); output nodes

(again, one for each

pitch-class); a 12x12

matrix which contains

the weights for the

connections between

each input node and

Figure 30: rootnet
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each output node; another 12x12 matrix that contains the ongoing activity between each

input node and each output node; a method for summing the activity at each output node;

and a method for comparing the activity at each output node and selecting a winner.  The

node with the highest sum of activity is declared the winner; the pitch-class that it

corresponds to is output as the chord root.

The heart of the neural net is the activity matrix, a 12x12 table that summarizes

the connections between the input and output nodes.  Rows 1-12 contain activity coming

from input nodes 0-11 (corresponding to pitch-classes 0-11), and columns 1-12 list the

activity at output nodes 0-11 (corresponding to chord roots with pitch class 0-11).  At

each location in the matrix is a number that is equal to the activity at the row's input node

(which will be between 0 and 1) times the weight on the connection between the row's

input node and the column's output node (which will be between -1 and 1).  To calculate

the value at [3, 3], for example, one looks at the activity at input node 2 (let’s say it is 1)

and at the weight between input node 2 and output node 2 (which we'll say is .5), so the

value at this location will be 0.5.  The values in the activity matrix are continually

updated as notes are turned on and off.

Every 50 milliseconds, a pulse is received through r timebase; this remote

"metronome" synchronizes ongoing analysis processes.  The pulse (actually a BANG

message) is sent to the matrix, causing it output its contents into the mtx_mean object,

which calculates the arithmetic mean of each column.  The mean is then multiplied by 12;

the result is a quick and efficient calculation of the sum of each column, and a total

picture of the activity at each output node.
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Once the total value of each output node is calculated, the evaluate subpatch

(pictured in Figure 31) compares them, selects the highest sum, and outputs the node

number of the winner.  First, the tag subpatch appends the node number prepended to the

node’s activity.  The resulting [sum, node#] packages are sent through a series of

comproute objects.  Each comproute (Figure 32) receives one of these packages in each

of its two inlets.  The two packages are unwrapped and their sums are compared; the

higher sum is repacked with its node# and sent out the outlet.  At the bottom of the

cascade of comproute objects, the package with the highest sum is output.  The node# of

the winner is output from the patch.

Figure 31: evaluate subpatch

There is one special case, handled at the bottom of the evaluate patch: if there is

no input to the net, a node will still be picked arbitrarily as the winner.  In this case the

value coming from r netActivity will be 0, so output from the net is blocked and -1 is
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output as the root, to indicate that no input is being applied to the net (no notes are being

played).

Input nodes

Imagine that note number

60 (middle C) is played, causing

pitch-class 0 and its associated

input node to be activated. The

node outputs a 1, which is sent to

every output node.  Each output

node has an activity level of 1.

Clearly, this example could not produce intelligent behavior, as any input would

cause all output nodes to be equally activated.  What we want is for an active input node

to activate certain output nodes more than others.  In other words, we want the

connections between input and output nodes to be weighted, with strongly correlated

connections having higher numerical weights than uncorrelated connections.  To use a

musical example, we want the connections between the input node corresponding to C

and the output nodes corresponding to C, F, and Ab to receive strong weights (because

the note C is a likely member of C, F, and Ab chords), and the connections between

input-C and output-B and output-Db to receive weak or negative weights (since C is not a

natural member of B and Db triads).

Each connection between an input node and an output node will have its own

individual weight; 12 input nodes connected to each of 12 output nodes equals 144

Figure 32: comproute
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separate connections with 144 separate weights.  The management of these weights is

handled by another 12x12 matrix, called address; the contents of the matrix is stored in a

file called address.mtx (see Table 1).

Each location in the matrix holds an integer between 0 and 100.  These integers are not

the connection weights themselves, but rather are indexes to a function stored in an array

called weights, which is pictured in Figure 33.  This graph

is of the function 7.3
3 xy = , which is the basic

equation 3 xy =  scaled so that the y values -1 to

1, inclusive, fit within a 101-address array (50

negative value, 50 positive values, and 0).  The

combination of the matrix address and the weights array cause the connection weights to

be a function of 7.3
50]1,1[

3 −− = xy .  The calculated weights are listed in Table 2.  The

connection weights themselves could very easily be stored within the matrix; the reason

they are not has to do with the backpropagation algorithm that allows the neural net to

automatically configure its own weights.  This algorithm will be discussed in detail

shortly.

The loadweights subpatch pictured in Figure 34 is responsible for loading the

weights for a single input node at loadtime (when the patch is first loaded).  The input

node number being loaded is entered in the inlet; the row of the address matrix

corresponding to that node number is output; these numbers are indexes to the weights

array.  The weights are read from the array, packed, and output from the patch.

Figure 33: weights array
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Table 1: weight addresses, as stored in address.mtx
0 1 2 3 4 5 6 7 8 9 10 11

0 100 19 54 1 1 93 64 42 88 75 1 1
1 1 100 1 56 16 11 70 60 1 94 57 61
2 44 1 100 54 51 27 1 89 64 1 63 80
3 87 15 1 98 70 42 1 1 84 61 11 67
4 95 91 46 1 97 49 35 1 1 95 83 1
5 12 95 94 28 1 100 29 46 27 18 97 81
6 53 1 86 60 44 1 90 50 44 1 1 83
7 50 51 1 57 51 49 1 74 50 48 1 1
8 49 89 82 1 89 86 18 1 100 14 84 1
9 34 52 77 91 1 74 90 2 42 99 1 72
10 57 28 51 91 83 44 73 67 12 1 100 8
11 58 48 23 62 76 82 1 54 75 12 1 100

Table 2: calculated connection weights
0 1 2 3 4 5 6 7 8 9 10 11

0 0.99568 -0.849022 0.429027 -0.989002 -0.989002 0.946864 0.65139 -0.540541 0.908642 0.790275 -0.989002 -0.989002
1 -0.989002 0.99568 -0.989002 0.491114 -0.875571 -0.916544 0.733626 0.58228 -0.989002 0.954148 0.517008 0.601076
2 -0.491114 -0.989002 0.99568 0.429027 0.27027 -0.768613 -0.989002 0.916544 0.65139 -0.989002 0.635496 0.839793
3 0.900601 -0.884072 -0.989002 0.982227 0.733626 -0.540541 -0.989002 -0.989002 0.875571 0.601076 -0.916544 0.694941
4 0.961322 0.931951 -0.429027 -0.989002 0.975358 -0.27027 -0.666544 -0.989002 -0.989002 0.961322 0.866901 -0.989002
5 -0.908642 0.961322 0.954148 -0.757308 -0.989002 0.99568 -0.745655 -0.429027 -0.768613 -0.858055 0.975358 0.849022
6 0.389797 -0.989002 0.892413 0.58228 -0.491114 -0.989002 0.924311 0 -0.491114 -0.989002 -0.989002 0.8669010
7 0 0.27027 -0.989002 0.517008 0.27027 -0.27027 -0.989002 0.779594 0 -0.340519 -0.989002 -0.989002
8 -0.27027 0.916544 0.858055 -0.989002 0.916544 0.892413 -0.858055 -0.989002 0.99568 -0.892413 0.875571 -0.989002
9 -0.681038 0.340519 0.810811 0.931951 -0.989002 0.779594 0.924311 -0.982227 -0.540541 0.989002 -0.989002 0.757308

10 0.517008 -0.757308 0.27027 0.931951 0.866901 -0.491114 0.768613 0.694941 -0.908642 -0.989002 0.99568 -0.939467
11 0.540541 -0.340519 -0.810811 0.618764 0.800675 0.858055 -0.989002 0.429027 0.790275 -0.908642 -0.989002 0.99568
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When a pitch-class is activated, it should send these weights to the activity matrix.

This is a simple matter: one needs only to prepend the correct row and column numbers

to each weight and

send the resulting

package to the

matrix.  When the

pitch-class is

deactivated, the row

corresponding to the

turned-off pitch-

class should be filled

with zeros.  Since an

active pitch-class is

indicated by a 1, and an inactive pitch-class is indicated by a 0, one needs only to

multiply each weight by the proper pitch-class activity and then send the result to the

matrix.

Suppose, though, that one wants to play arpeggios and have them correctly

identified as chords.  Our current setup will not work in this case, since the neural net has

no "memory"; once a note is released, it is essentially forgotten by the net.  What's

needed is a way to extend the "presence" of a pitch class over a short period of time, so

that a note can interact with notes that come later.

This functionality is provided by the decay subpatch, pictured in Figure 35.  This

patch applies a "decay" function (Figure 36) when a pitch-class is deactivated, causing

Figure 34: loadweights subpatch
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the pitch-class's activity to be extended for a short period of time.  The decay function

moves from 1 to 0 over the course of 300 milliseconds; notes will have significant

interaction with notes that come immediately afterward, but will then have an

increasingly smaller effect on subsequent notes.  The decay is not linear, but rather is

sloped, so that activation decreases slowly at first, and then rapidly.  The function is

derived from ( )xy cos= , scaled so that ]1,0[y  will fit in a 100-point array, resulting in

( )63cos]1,0[ xy = .  The decay subpatch outputs values from the decay array; it reads from

address 0 (x =1) whenever the pitch-class is active, and then reads through the remaining

99 addresses of the array when the pitch-class is deactivated.

With the decay operation in place, the structure of our input node algorithm is

complete, and is pictured in Figure 37.  The connection weights are calculated at

loadtime, and remain static as the net is being operated.  The weights are multiplied by

the pitch-class activity, after it is processed through the decay function, which extends the

influence of pitch-classes beyond the point that they are deactivated.  The result is the

fluctuating activity that is sent to the activity matrix.

Figure 36: decay functionFigure 35: decay subpatch
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As each input node's activity is being continuously updated, the sum of all activity

at each output node is calculated by summing each column in the activity matrix.  The

sum for each output node is compared, and the node with the highest sum is selected.

The node number of this winner is output as the chord root.  This output is sent through a

change object, which again filters successive repeats of the same number, and then out of

the patch.  The root is also sent to the quality subpatch, which determines the chord's

basic type.  The quality subpatch is discussed in detail shortly.

Backpropagation

It is clear that the connection weights are the most essential part of our

connectionist root identifier; if they are not set properly, the net will not function

correctly.  With 144 connection weights to set, each with 100 possible values, one is

faced with a large number of possible combinations of weight values.  Luckily, neural

Figure 37: inputnode
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nets can essentially "learn their own rules" by setting their own connection weights

through the process of backpropagation.

To begin backpropagation, one constructs a training set, which consists of

examples of the expected patterns along with the output that is to be associated with that

pattern.  In the case of our root identifier, our training set will consist of a list of spelled-

out chords along with the correct root of each chord.  The training set is presented item-

by-item (chord-by-chord) to the neural net, whose connection weights are set to random

values or are zeroed out.  For each training item, the net's output is compared to the

correct output listed in the training set.  If they are the same, then the net got the answer

correct and nothing more need be done.  If, however, the training set's answer and the

neural net's answer are different, the connection weights are adjusted.  Specifically, the

connections between the input nodes that were activated during the training exercise and

the output node that erroneously received the highest sum are adjusted in the negative

direction, and the connections between the activated input nodes and the output node that

should have won are adjusted in the positive direction.  A musical example will help to

clarify the process.  If the training exercise is a C major chord, spelled out C-E-G, and the

net identifies this incorrectly as having a root of Bb, then the following weight

adjustments are made: the connections between input nodes C, E, and G, and output node

Bb are adjusted in the negative direction, and the connections between input nodes C, E,

and G, and output node C are adjusted in the positive direction.  After the adjustments are

complete, the net continues on with the next training exercise.  When the net makes it

through the entire training set without getting any answers incorrect, training is complete.
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The backpropagation algorithm for our chord root identifier is called

trainingsession, and is pictured in Figure 38.  The trainer subpatch holds the training set,

which consists of all major, minor, diminished, and augmented chords, with all common

varieties of 7th chords.

The set is stored in the

form of a text file; it is

contained in the Appendix

of this paper.  One by one,

trainer outputs exercises

from the training set.  The

chord members are sent to

the makenote, which plays

the chord in MIDI notes

and sends them to the chord identifier.  The backwardprop subpatch compares the

identifier's output with the expected output listed in the training set, and makes any

necessary weight adjustments.  Trainer then updates its running count of correct and

incorrect answers and then proceeds with the next training exercise.

Figure 38: trainingsession
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Figure 40: trainerFigure 39: Backwardprop

Figure 40: trainer
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Backwardprop and trainer are pictured in Figures 39 and 40.  The bulk of

backwardprop deals with updating the weight addresses in the address matrix, saving the

updated matrix to disk, and loading the new weight addresses into the root identifier.

Trainer deals primary with outputting the training set and with keeping counts of right and

wrong answers.  The counters subpatch, pictured in Figure 41, maintains counts of the

number of training exercises attempted, the number answered correctly, and the number

of passes that have been made through the training set.  Importantly, these counts are

printed for the user (and a MIDI note is sounded) at the start of every training pass.  This

keeps the user informed of the trainer's progress, an important consideration since the

algorithm is designed to repeat indefinitely until the net gets 100% of the training

exercises in the set correct.

Figure 41: counters
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The unique shape of the weights array (see Figure 42), which is the "learning

curve" of this neural net, has a great effect of the backpropagation process.  Training

started with weights set to 0, at the center of the graph.  As the weights begin to be

adjusted, they change drastically, since the slope

near x = 0 is quite steep.  As training continues and

the weights approach  -1 and 1, the adjustments

become more subtle and refined, since the slope of

the learning curve is less extreme as you get further

from 0.  The rational for storing addresses to the

weight array, and not the weights themselves, becomes clear: it is far simpler to adjust an

integer array address by 1 or -1 than it is to adjust a floating-point weight from one

arbitrary value to another (from 0.989002 to 0.99568, for example).

Chord type identification

Once a chord's root is identified, this information can be used to facilitate the

identification of the chord's type or quality.  Several methods of doing this have already

been outlined; the one that I have implemented in PD bears some resemblance to Robert

Rowe's thirds-stacking algorithm.  My chord identifier is a bit simpler, in that it looks for

the presence of notes that function in specific ways relative to the identified root.  It

makes no attempt to identify the role of each and every note in the chord.

First, chord members are classified with regards to their height above the root; if

the root is G, the pitch-class D is classified as 7, since it is 7 half-steps above the root.

This process is akin to the "moveable do" solfège system that is used in sight-singing

Figure 42: weights array
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exercises, in which the solfège syllable (do, re, mi, etc.) associated with a specific note

changes according to the key or tonal center of the exercise.  The functioncalc subpatch

(Figure 43) performs this operation by subtracting the root number from all active pitch-

class numbers, and then adding 12 if the result is

less than 0.  The results are summarized in a

1x12 matrix: the 12 columns in the matrix

represent the 12 possible chord member

functions (root, m2, M2, etc.).  A 1 is placed in

a column if that chord member is present, and a

0 is placed in a column if that chord member is

not present.

The matrix is then examined for the

presence of specific chord members.  The

subpatch in Figure 44, for

example, tries to determine

what kind of fifth is present

in the chord.  This patch

looks for the exclusive

presence of one type of

fifth or another.  In its inlet

it receives the status flags

(0 or 1) for chord members

6 (diminished fifth or

Figure 43: functioncalc

Figure 44: look for 5ths



Rippin 80

tritone) 7 (perfect fifth) and 8 (augmented fifth).  The patch uses an arithmetic trick

where each type of 5th is given a "map" value, which is multiplied by the 5th's status

flag.  The results are then summed together, resulting in the formula Sum = (d5 status *

d5 map) + (P5 status * P5 map) + (A5 status * A5 map).  The map values are carefully

chosen so that each unique sum represents the exclusive presence of a specific fifth or

combination of fifths.  Diminished fifth is given a map value of 1; perfect fifth is mapped

to 2, and augmented fifth is mapped to 4.  So, for example, if only a perfect fifth is

present, the result will be (0 * 1) + (1 * 2) + (0 * 4) = 2.  A sum of 2 means that a perfect

fifth, and only a perfect fifth, is present.  The possible sums and what they each represent

are listed in Figure 44.  A similar process is carried out when looking for minor and

major thirds and diminished, minor, and major sevenths.

Once the types of thirds, fifths, and sevenths present in a chord have been

identified, the results are output in the form of a "quality code."  The codes are listed on

the quality parent patch, pictured in Figure 45.  For example, the code 222 represents a

dominant seventh chord, since 200 = minor seventh, 20 = perfect fifth, and 2 = major

third.  This code system is admittedly ad hoc and arbitrary, but it serves to communicate

the basic harmonic quality of a chord in a very compact way.

Our chord identifier is now fully complete.  It accepts a stream of MIDI notes as

its input, and outputs the root expressed as a pitch-class (0-11) and the quality expressed

as a quality code.  This information can be distributed to any patch that needs to know the

immediate harmonic context.  The computer is now able to operate on a higher, more

musical level.  The human→computer Influence now has the potential to be not only

more extensive, but more musically meaningful as well.
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Figure 45: quality parent patch
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Performance comparison of chord identification systems

Factors influencing performance

How well do the various approaches to chord identifying work?  How does the

output of each of them compare to an analysis performed by a musician?

Olaf Matthes has ported Robert Rowe's chord identification code to PD and

included it in has Maxlib library of externals as the object chord.  My connectionist chord

identifier and Rowe's rule-based system can therefore operate and be tested side-by-side

in the same environment.  Two testing exercises, one involving block chords and the

other arpeggios, will serve to illustrate the strengths and weaknesses of each system.  For

these tests, the neural net in chords was trained using a 312-item training set (included in

the appendix) containing triads and various seventh chords.

The patch pictured in Figure 46 is designed to test and capture the output of

chord and chords.  It samples the output of each identifier whenever it receives a

controller 100 message on

channel 16; these messages are

embedded in the test MIDI files

(the reasoning for this is

explained shortly).  The test

MIDI files are recordings of a

musician playing along with a

metronome.  The sampled output of each identifier is sent to coll objects, where it can be

viewed and saved to a file.  Annotated scores of the test files, along with the resulting

Figure 46: chord tester
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contents of the .coll files, are in the appendix of this paper.  The sample MIDI files are

included on the CD-ROM appendix.

The speed in which chord and chords can provide an assessment of the chord

currently being played has a large effect on their efficacy and usefulness.  Rowe’s

derived chord extern was written and compiled in C, and is therefore quite efficient.  It is

designed to complete an analysis within one DSP cycle of the presentation of input,

resulting in no measurable time delay between the input and output.  My chords

abstraction was, by comparison, built within PD, and is therefore somewhat slower.   The

speed of this object is determined largely by the setting on the metronome that supplies

BANG messages to s timebase, the synchronizing clock for all ongoing analyses.

Smaller timebase values result in more rapid analysis with a heavier CPU load; larger

values produce sluggish analyses.  An optimal setting, arrived at through trial and error,

has the metronome sending a BANG to timebase every 20 milliseconds.  At this setting,

most input causes an analyzed root to be output in less than 10 milliseconds, with root

analysis never taking longer than 22 milliseconds.  The chord type identifier, which must

wait for the root to be identified before even starting its analysis, is somewhat slower,

most often needing between 10 and 30 milliseconds, and sometimes as much as 70

milliseconds, to produce output.  This analysis, while sluggish, is still useable in a live

performance situation.

Both chord and chords output a new assessment of chord root and type each time

a new note is played or released.  The resulting stream of data is dense and redundant,

and must be “thinned” for it to be useable.  One way of doing this involves listening to or

“sampling” the algorithm’s output once every beat or two.  Our beat tracker could be
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used to ensure that this is done at metrically appropriate times (the test MIDI files contain

controller messages to trigger a round of output sampling, so that inaccuracies in the beat

tracker do not show up as inaccuracies in the chord identifier output stream).  In a live

performance, however, chords may not be played “on the beat.”  Some styles of music in

fact dictate that chords and notes should be played slightly “behind the beat.”  Sampling

the output of a chord identifier directly on the beat may therefore miss significant

important information, leading to erroneous chord identification.

An obvious but effective solution to this problem involves sampling the output of

a chord identifier slightly after the beat, a feat which can be accomplished by simply

inserting a delay between the beat output of the beat tracker and the inlet that triggers a

new sampling of the chord identifier.  Choosing the length of this delay is a small but

important matter.  Rowe’s chord object seems to function best when its output is sampled

about 25 milliseconds after the beat; longer delays do not improve performance

noticeably.  Because of the slower processing speed described above, my chords object

requires a delay of 75 milliseconds to achieve top performance.

Finally, both chord and chords have mechanisms that allow them to identify

arpeggiated chords.  In my chords object, this is achieved through the use of a decay

function, as described above.  The length of the decay is variable, and has a great effect

on the object’s performance.  For block chords, a decay of 0 is ideal, since the resulting

analysis will be based only on notes that are on at the time when the chord identifier is

sampled.  For arpeggios, the ideal decay would be long enough so that the first note of

each arpeggio will still be somewhat active when the last note is played, allowing the

arpeggio as a whole can be identified together as a single chord.  A decay of 300
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milliseconds seems to be optimal for purely arpeggiated passages.  In practice, the length

of the decay must be set at loadtime, and cannot change throughout the course of a piece,

so a compromise much be reached.  While a decay of 150 milliseconds works moderately

well for passages of mixed block chords and arpeggios, it is obvious that this parameter

should be calibrated to achieve optimal performance on individual pieces.  Interestingly,

while underestimating the decay length causes each individual note to successively be

identified as the chord root, overestimating it causes a rough harmonic analysis of larger

metric groups (such as groups of beats or measures) to be output, an analysis which could

potentially be useful.

Block chords example: J. S. Bach’s Jesu Meine Freude

Both chord and chords provide an adequate analysis of this piece. Rowe’s chord

has two problems that cause several chords to be identified incorrectly.  First, In trying to

determine the function of each and every note in a chord, chord often classifies

nonharmonic tones, such as passing tones and upper neighbors, as exotic functioning

chord members.  In measure 19, for example, the chord in the first beat is identified as F

major, flat five, major seventh.  This chord is actually an E-minor with a double

suspension: factoring the A and the F into the chord, rather than ignoring them as

nonharmonic tones, causes the erroneous identification.    Secondly, the fact that chord is

designed to identify arpeggios as well as block chords sometimes causes successive

chords to be blurred together.  In measure 17, for example, the G-major chord in the

fourth beat is misidentified as an E-minor minor-seventh, because it is blended together
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with the C-major chord in the first three beats.  These two problems account for most or

all of the chords misidentified by chord in this example.

My chords is also affected by this blending of successive chords to a greater or

lesser extent, depending on the setting of the decay length.  When decay = 0 ms, no

blending occurs, but significant blending is apparent if decay is set as high as 300 ms.

For example, when decay = 300 ms, the chord in measure 17 misidentified by chord

above is misidentified here as a C-major major-seventh.  This effect can be largely

controlled by resetting the decay length to a more appropriate value; chords achieved

90+% accuracy on this example when decay was set to 0 ms, but was reduced to below

50% accuracy when decay was changed to 300 ms.  However, as was mentioned above,

even a blurred chord identification provides some insight into the harmonic structure of a

larger structural grouping.  The last beat of measure 18 and the whole of measure 19 are

collectively identified as having a root of F, which is not an unfeasible analysis,

considering that it’s actually an F chord followed by several A-minor chords.

Chords does not share chord’s tendency to force nonharmonic tones into an exotic

functional role within a chord.  Since it looks to identify only a root, third, fifth, and

seventh, any notes that cannot be considered one of these members is simply ignored.  If

one wishes to correctly identify the upper members of chords, one would need to add

them to the training set and to modify the chord type algorithm.

The few remaining inaccuracies in chords’ analysis are difficult to explain.  The

last beat of measure 20, for example, is identified as having a root of C#, despite the fact

that there has not been a C# in the entire example to this point.  These errors are most

likely biproducts of the neural net’s functioning, and perhaps suggest that the net needs to
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be “overtrained” to eliminate any spurious biases that may be lingering in an otherwise

well-functioning neural net.

Arpeggio example: Scriabin’s Opus 11 Prelude in C

Neither chord nor chords performs remarkably on this difficult piece, but, given

the challenges of arpeggiation, missing chord members, and ambiguous roots, neither

algorithm fails miserably.

All of the chord identifications output but Rowe’s chord are feasible, and most of

them are correct.  All of the questionable identifications can be attributed to the two

problems discussed above, namely chord blurring and the algorithm’s already discussed

tendency to classify all active notes as functional chord members.  In measure 9, for

example, the first two beats are blurred together and identified as F major-ninth.

My chords supplies roughly the same identification as chord about 75% of the

time.  The erroneous identifications, such as the repeated identification in measures 8-10

of E-minor and G-Major chords as C#-diminished, are once again difficult to explain.

These are, as mentioned, most likely byproducts of the net’s operation in the form of

biases in the connection weights, and could possibly be eliminated by training the net

past the point where it achieves 100% accuracy on the training set.

While the performance of my connectionist chord identifier is certainly not

perfect, it is, in my experience, accurate and fast enough to be useful in a live

performance situation.  This tests have demonstrated that chords, while not producing a

100% accurate representation of the music it is analyzing, does manage to capture a
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reliable harmonic context in which compositional algorithms can operate.  A performer

can then Influence the computer’s output in a harmonically meaningful way.
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6. Conclusion

Deriving musical meaning from an ongoing performance is the first step in

making computers act and react in musical ways.  The tools described in the previous

chapters provide a computer with only the most basic musical understanding.  Research

into the task of analyzing a human’s musical performance is ongoing, and will be for

some time to come.  Advances in this field are continuously being made, and many

researchers make their findings available to others almost immediately via the internet in

the form of patches or external programs.

Yet the tools outlined above, the tempo tracker and chord identifier, are enough to

allow real musical interaction to occur when used in a larger musical environment.  A

compositional example will serve to illustrate the potential power of these tools.

Compositional Example: Mass1

The Mass series is a set of templates for interactive composition and performance.

They are not pieces of music per se, but rather environments for the production of pieces.

The two current versions, Mass1 and Mass3 are very similar in that they consist of two

individuals producing musical material, and a compositional algorithm that generates an

audio output stream based on interpolation of various features of the two inputs.

Mass1 involves a human musician whose performance is being analyzed, a

“computer composer” suggesting notes for future output, and a “shared space” that

ultimately decides what notes should be played.  The interface for Mass1 is shown in

Figure 47.  Most of the objects are informational: period, pulse, root, and quality are all
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outputs of the objects analyzing the human’s input.  Dsp turns PD’s sound engine on and

off; analysis turns the analysis objects on and off; init resets the analyses.  On-off turns

the computer composer on and off, and go tells it to start producing output.

The “computer composer” generates suggestions for what the note number,

velocity, and rhythmic value of the next output notes should be; the computer composer

does not itself make any sound.  Note number and rhythm suggestions are chosen using

Markov chains created by blankHands, as previously discussed, loaded, for example, with

the Bach analysis files we created earlier.  Velocity is chosen using a set of musical rules,

which state, for example, that an ascending melodic line should be accompanied by a

crescendo, and that the note following a tritone should be soft.  On the human side, note

number suggestions are made via Markov chains generated from the realtime analysis of

the human’s input.  Velocity explicitly follows the human’s playing: the suggestion for

the next velocity is the last velocity played by the human.  Similarly, the last metric unit

played by the human becomes the suggestion for the next output rhythm.

Any number of rules and analysis-genesis algorithms could be put in place of

those described above: the point is that both the human and the computer make

Figure 47: Mass1
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suggestions for each of the parameters of future output notes.  These suggestions are sent

to a “shared space” that ultimately decides what the parameters of the next output should

be.

Returning to the interface, the three faders, note number, velocity, and rhythm,

control who has control over each parameter.  If, for example, the note number fader is

entirely to the left, the human’s suggestion for note number will be used every time; if the

fader is to the right, the computer’s suggestion will be used every time.  If the fader is the

middle, the human’s suggestion will be used about half the time, and the computer’s

suggestion will be used about half the time.  The further to the left the fader gets, the

more often the human’s suggestion will be used.  This behavior is accomplished by the

patch in Figure 48.  Velocity is handled a bit

differently: a weighted average is taken between

the computer and human’s suggestions, so that

when the fader is somewhere in the middle the

velocity value is somewhere in the middle as well.

As the fader approaches hard left, the output

velocity approaches the human’s suggestion.

Mass1 therefore has three parameters, three

control surfaces that effect the unfolding

composition, and all three of them are, in a very

direct way, manifestations of the Influence

parameter introduced above.  Mass3, a similar template for composition, expands this

concept to include interaction between two humans: the “computer composer” is replaced

Figure 48: parameter interpolation
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by a second human, and the “shared space” interpolates between the analysis of their

input to direct a third, computer-generated musical voice.

Pieces created with these Mass1 and Mass3 are demonstrations of the Influence

and Participation parameters that are the subject of this paper.  Influence and

Participation together describe the roles of the players in interactive music systems.  The

drama of humans and computers interacting in the ongoing creation of music is the

method and result of much of today’s computer music.  While it is obvious that not all

interactive composers think in terms of information flow, it is clear that some do.  What

is apparent is that all interactive music systems can, to a greater or lesser extent, be

understood in these terms.  As the ability to communicate musical intention to computers

grows, they more and more become manifestations of our musical thought, allowing them

to be creative partners in improvisation, composition, and performance.
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Appendix

CHORDS Training Set
Correct chord root followed by active pitch-classes.  Pitch-class 0 is C, 1 is Db, and so
on, and –1 is “off.”

0  0  -1  -1  1;
1  1;
2  2;
3  3;
4  4;
5  5;
6  6;
7  7;
8  8;
9  9;
10 10;
11 11;
0  0  7;
1  1  8;
2  2  9;
3  3  10;
4  4  11;
5  5  0;
6  6  1;
7  7  2;
8  8  3;
9  9  4;
10 10 5;
11 11 6;
0  0  4;
1  1  5;
2  2  6;
3  3  7;
4  4  8;
5  5  9;
6  6  10;
7  7  11;
8  8  0;
9  9  1;
10 10 2;
11 11 3;
0  0  3;
1  1  4;
2  2  5;
3  3  6;
4  4  7;
5  5  8;
6  6  9;
7  7  10;
8  8  11;
9  9  0;
10 10 1;
11 11 2;
0  0  4  7 -1;
1  1  5  8;
2  2  6  9;
3  3  7  10;
4  4  8  11;
5  5  9  0;

6  6  10 1;
7  7  11 2;
8  8  0  3;
9  9  1  4;
10 10 2  5;
11 11 3  6;
0  4  7  0;
1  5  8  1;
2  6  9  2;
3  7  10 3;
4  8  11 4;
5  9  0  5;
6  10 1  6;
7  11 2  7;
8  0  3  8;
9  1  4  9;
10 2  5  10;
11 3  6  11;
0  7  0  4;
1  8  1  5;
2  9  2  6;
3  10 3  7;
4  11 4  8;
5  0  5  9;
6  1  6  10;
7  2  7  11;
8  3  8  0;
9  4  9  1;
10 5  10 2;
11 6  11 3;
0  0  3  7;
1  1  4  8;
2  2  5  9;
3  3  6  10;
4  4  7  11;
5  5  8  0;
6  6  9  1;
7  7  10 2;
8  8  11 3;
9  9  0  4;
10 10 1  5;
11 11 2  6;
0  3  7  0;
1  4  8  1;
2  5  9  2;
3  6  10 3;
4  7  11 4;
5  8  0  5;
6  9  1  6;
7  10 2  7;
8  11 3  8;
9  0  4  9;
10 1  5  10;
11 2  6  11;

0  7  0  3;
1  8  1  4;
2  9  2  5;
3  10 3  6;
4  11 4  7;
5  0  5  8;
6  1  6  9;
7  2  7  10;
8  3  8  11;
9  4  9  0;
10 5  10 1;
11 6  11 2;
0  0  3  6;
1  1  4  7;
2  2  5  8;
3  3  6  9;
4  4  7  10;
5  5  8  11;
6  6  9  0;
7  7  10 1;
8  8  11 2;
9  9  0  3;
10 10 1  4;
11 11 2  5;
0  3  6  0;
1  4  7  1;
2  5  8  2;
3  6  9  3;
4  7  10 4;
5  8  11 5;
6  9  0  6;
7  10 1  7;
8  11 2  8;
9  0  3  9;
10 1  4  10;
11 2  5  11;
0  6  0  3;
1  7  1  4;
2  8  2  5;
3  9  3  6;
4  10 4  7;
5  11 5  8;
6  0  6  9;
7  1  7  10;
8  2  8  11;
9  3  9  0;
10 4  10 1;
11 5  11 2;
0  0  4  8;
1  1  5  9;
2  2  6  10;
3  3  7  11;
0  4  8  0;
1  5  9  1;

2  6  10 2;
3  7  11 3;
0  8  0  4;
1  9  1  5;
2  10 2  6;
3  11 3  7;
0  4  7  10 0;
1  5  8  11 1;
2  6  9  0  2;
3  7  10 1  3;
4  8  11 2  4;
5  9  0  3  5;
6  10 1  4  6;
7  11 2  5  7;
8  0  3  6  8;
9  1  4  7  9;
10 2  5  8  10;
11 3  6  9  11;
0  7  10 0  4;
1  8  11 1  5;
2  9  0  2  6;
3  10 1  3  7;
4  11 2  4  8;
5  0  3  5  9;
6  1  4  6  10;
7  2  5  7  11;
8  3  6  8  0;
9  4  7  9  1;
10 5  8  10 2;
11 6  9  11 3;
0  10 0  4  7;
1  11 1  5  8;
2  0  2  6  9;
3  1  3  7  10;
4  2  4  8  11;
5  3  5  9  0;
6  4  6  10 1;
7  5  7  11 2;
8  6  8  0  3;
9  7  9  1  4;
10 8  10 2  5;
11 9  11 3  6;
0  0  3  7  10;
1  1  4  8  11;
2  2  5  9  0;
3  3  6  10 1;
4  4  7  11 2;
5  5  8  0  3;
6  6  9  1  4;
7  7  10 2  5;
8  8  11 3  6;
9  9  0  4  7;
10 10 1  5  8;
11 11 2  6  9;
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0  3  7  10 0;
1  4  8  11 1;
2  5  9  0  2;
3  6  10 1  3;
4  7  11 2  4;
5  8  0  3  5;
6  9  1  4  6;
7  10 2  5  7;
8  11 3  6  8;
9  0  4  7  9;
10 1  5  8  10;
11 2  6  9  11;
0  7  10 0  3;
1  8  11 1  4;
2  9  0  2  5;
3  10 1  3  6;
4  11 2  4  7;
5  0  3  5  8;
6  1  4  6  9;
7  2  5  7  10;
8  3  6  8  11;
9  4  7  9  0;
10 5  8  10 1;
11 6  9  11 2;
0  10 0  3  7;
1  11 1  4  8;
2  0  2  5  9;
3  1  3  6  10;
4  2  4  7  11;
5  3  5  8  0;
6  4  6  9  1;
7  5  7  10 2;
8  6  8  11 3;
9  7  9  0  4;
10 8  10 1  5;
11 9  11 2  6;
0  0  3  6  10;
1  1  4  7  11;
2  2  5  8  0;
3  3  6  9  1;
4  4  7  10 2;
5  5  8  11 3;
6  6  9  0  4;
7  7  10 1  5;
8  8  11 2  6;
9  9  0  3  7;
10 10 1  4  8;
11 11 2  5  9;
0  3  6  10 0;
1  4  7  11 1;
2  5  8  0  2;
3  6  9  1  3;
4  7  10 2  4;
5  8  11 3  5;
6  9  0  4  6;
7  10 1  5  7;
8  11 2  6  8;
9  0  3  7  9;
10 1  4  8  10;
11 2  5  9  11;
0  6  10 0  3;
1  7  11 1  4;
2  8  0  2  5;
3  9  1  3  6;

4  10 2  4  7;
5  11 3  5  8;
6  0  4  6  9;
7  1  5  7  10;
8  2  6  8  11;
9  3  7  9  0;
10 4  8  10 1;
11 5  9  11 2;
0  10 0  3  6;
1  11 1  4  7;
2  0  2  5  8;
3  1  3  6  9;
4  2  4  7  10;
5  3  5  8  11;
6  4  6  9  0;
7  5  7  10 1;
8  6  8  11 2;
9  7  9  0  3;
10 8  10 1  4;
11 9  11 2  5;
0  0  3  6  9;
1  1  4  7  10;
2  2  5  8  11;
0  3  6  9  0;
1  4  7  10  1;
2  5  8  11  2;
0  6  9  0  3;
1  7  10 1  4;
2  8  11 2  5;
0  9  0  3  6;
1  10 1  4  7;
2  11 2  5  8;
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Tempo Tracker Test Data

Bach Test
Data is beat number (embedded in test MIDI file) followed by beat period theory in
milliseconds.  MIDI file generated by a pianist playing along with a metronome set to
120 BPM so the basic quarter-note pulse is around 500 milliseconds.  ** indicates that
the tracker has switched from tracking eighth-notes to tracking quarter-notes.  Musical
score follows raw test data.

1  0;
1  229.297;
1  232.925;
2  232.925;
2  236.408;
3  236.408;
3  238.295;
3  476.88;**
3  480.943;
4  480.943;
4  482.685;
4  489.941;
5  489.941;
5  494.295;
5  498.068;
6  498.068;
6  500.68;
7  500.68;
7  497.197;
7  487.909;
8  487.909;
8  490.086;
9  490.086;
9  499.664;
9  503.147;
10 503.147;
10 500.825;
10 497.633;
11 497.633;
11 493.569;
11 494.15;
12 494.15;
12 499.229;
13 499.229;
13 499.519;
13 507.356;
14 507.356;
15 507.356;
16 507.356;
17 507.356;
17 507.066;
18 507.066;
18 499.229;
18 496.036;
19 496.036;
19 500.68;
19 503.293;

20 503.293;
20 509.968;
20 507.066;
21 507.066;
21 500.825;
21 503.728;
22 503.728;
23 503.728;
23 501.624;
24 501.624;
24 502.204;
25 502.204;
25 502.639;
26 502.639;
26 501.188;
26 500.898;
27 500.898;
27 494.803;
27 485.515;
28 485.515;
28 488.127;
28 493.932;
29 493.932;
29 493.642;
29 499.519;
30 499.519;
30 496.036;
31 496.036;
31 500.535;
31 501.406;
32 501.406;
32 501.841;
33 501.841;
33 505.76;
34 505.76;
34 506.776;
35 506.776;
35 507.937;
36 507.937;
36 503.728;
37 503.728;
37 499.084;
38 499.084;
38 494.005;
39 494.005;
39 497.488;
40 497.488;
40 501.261;

41 501.261;
41 499.664;
42 499.664;
42 500.1;
43 500.1;
44 500.1;
44 498.721;
45 498.721;
45 503.22;
46 503.22;
46 503.22;
47 503.22;
47 504.381;
48 504.381;
48 504.961;
49 504.961;
49 503.8;
50 503.8;
50 501.478;
51 501.478;
51 491.465;
52 491.465;
53 491.465;
53 484.741;
53 480.822;
54 480.822;
54 484.668;
55 484.668;
56 484.668;
56 485.321;
57 485.321;
57 483.435;
58 483.435;
58 483.289;
59 483.289;
59 483.725;
60 483.725;
60 480.097;
61 480.097;
61 481.113;
62 481.113;
62 482.999;
63 482.999;
63 498.286;
64 498.286;
65 498.286;
65 503.365;
65 496.98;

65 499.229;
66 499.229;
67 499.229;
67 501.116;
68 501.116;
68 499.229;
69 499.229;
69 498.503;
70 498.503;
70 503.147;
71 503.147;
71 499.229;
72 499.229;
72 504.308;
73 504.308;
73 498.794;
74 498.794;
74 497.923;
75 497.923;
75 503.438;
76 503.438;
76 502.277;
77 502.277;
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Scriabin Test
Data is beat number (embedded in test MIDI file) followed by beat period theory in
milliseconds.  MIDI file generated by a pianist playing along with a metronome set to
120 BPM so the basic quarter-note pulse is around 500 milliseconds, although musicians
generally perceive this in groups of five eighth-notes.  * indicates that the tracker has
switched from tracking eighth-notes to tracking quarter-notes.  Note the larger
fluctuations in beat period due to rubato, and the increasing beat periods due to the
ritardando at the end.  Musical score follows raw test data.

1  0;
1  245.261;
2  245.261;
2  245.551;
2  245.841;
3  245.841;
3  247.293;
3  499.713;*
3  506.679;
4  506.679;
4  502.035;
4  501.164;
5  501.164;
5  504.066;
5  502.035;
6  502.035;
6  501.164;
6  499.422;
7  499.422;
7  507.839;
7  508.71;
8  508.71;
8  507.936;
8  497.778;
9  497.778;
9  509.388;
9  506.195;
10 506.195;
10 513.161;
10 522.449;
11 522.449;
11 520.707;
11 520.417;

12 520.417;
12 510.839;
12 508.807;
13 508.807;
13 510.839;
13 513.451;
14 513.451;
14 503.873;
14 511.42;
15 511.42;
15 499.519;
15 490.522;
16 490.522;
16 495.166;
16 495.456;
17 495.456;
17 493.424;
17 493.424;
18 493.424;
18 492.553;
18 489.361;
19 489.361;
19 497.488;
19 493.714;
20 493.714;
20 498.649;
20 501.551;
21 501.551;
21 499.519;
21 502.132;
22 502.132;
22 499.81;
22 500.1;

23 500.1;
23 493.134;
23 500.1;
24 500.1;
24 490.231;
24 493.714;
25 493.714;
25 489.07;
25 495.456;
26 495.456;
26 500.39;
26 500.971;
27 500.971;
27 508.807;
27 505.905;
28 505.905;
28 511.42;
28 514.322;
29 514.322;
29 528.447;
29 531.64;
30 531.64;
30 545.475;
31 545.475;
31 545.185;
31 553.118;
31 563.567;
32 563.567;
32 574.306;
32 578.079;
33 578.079;
33 589.206;
33 602.17;

34 602.17;
34 596.752;
34 607.104;
35 607.104;
35 609.426;
35 616.682;
36 616.682;
36 620.939;
36 614.554;
37 614.554;
37 612.619;
37 621.81;
38 621.81;
38 627.615;
38 624.519;
39 624.519;
39 635.742;
39 632.259;
40 632.259;
40 627.421;
40 629.163;
40 633.42;
41 633.42;
41 644.014;
41 649.819;
42 649.819;
42 659.881;
42 665.686;
43 665.686;
43 660.462;
44 660.462;
44 668.976;
44 681.359;

45 681.359;
45 689.293;
45 690.164;
46 690.164;
46 693.26;
46 691.083;
46 688.084;
47 688.084;
47 686.149;
47 676.909;
48 676.909;
48 687.552;
48 683.198;
49 683.198;
49 675.845;
49 673.281;
50 673.281;
50 681.021;
51 681.021;
52 681.021;
53 681.021;
54 681.021;
55 681.021;
56 681.021;
57 681.021;
58 681.021;
59 681.021;
60 681.021;
61 681.021;
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Chords Test Data

Bach Test: Rippin’s Chords

Data is beat number (embedded in test MIDI file) followed by root and quality code.
Root is in pitch-class, where 0 is C, 1 is Db, and so on, and –1 is “off.”  Quality code is
deciphered as follows: M7=300, m7=200, d7=100; A5=30, P5=20, d5=10; M3=20,
m3=10.  Data from multiple tests with varying decay and delay settings.  Musical score
follows raw test data.

decay 0   0       300     0
delay 50  75      75      100

4  7 22;  7  22;  7  22;   7  22;
5  7 22;  7  22;  3  332;  7  22;
6  7 22;  7  22;  3  332;  7  22;
7  7 22;  7  22;  3  332;  7  22;
8  0 22;  0  22;  0  22;   0  22;
9  5 20;  5  20;  0  220;  5  20;
10 5 22;  5  22;  5  22    5  22;
11 5 22;  5  22;  5  2     5  22;
12 0 22;  0  22;  5  320;  0  22;
13 7 22;  7  22;  5  110;  7  22;
14 9 21;  9  21;  5  322   9  21;
15 2 221; 2  221; 2  221;  2  221;
16 3 332; 7  22;  5  110;  7  22;
17 0 22;  0  22   5  320;  0  22;
18 0 22;  0  22;  0  22;   0  22;
19 0 22;  0  22;  0  22;   0  22;
20 7 22;  7  22;  0  320;  7  22;
21 7 22;  7  22;  0  320;  7  22;
22 7 22;  11 220; 3  1;    11 220;
23 7 22;  4  21;  3  332;  4  21;
24 7 22;  5  301; 5  112;  5  301;
25 7 22;  9  21;  5  112;  9  21;
26 7 22   9  21;  5  11    9  21;
27 7 22;  9  21;  5  112   9  21;
28 7 22;  11 211; 5  112;  11 211;
29 7 22;  5  312; 11 210;  5  312;
30 7 22;  4  21;  5  320;  4  21;
31 7 22;  7  22;  5  320;  7  22;
32 7 22;  1  210; 5  320;  1  210;
33 7 22;  5  20;  5  320;  5  20;
34 7 22;  0  22;  5  320;  0  22;
35 7 22;  0  22;  0  22;   0  22;
36 7 22;  0  22;  0  22;   0  22;
37 7 22;  0  22;  0  320;  0  22;
38 7 22;  7  22;  0  320;  7  22;
39 9 221; 9  221; 0  122;  9  221;
40 7 22;  7  22;  0  320;  7  22;
41 9 1;   2  20;  3  310;  2  20;
42 9 1;   4  21;  4  21;   4  21;

43 9  1;   5  22;  5  22;  5  22;
44 9  1;   5  2;   5  2;   5  2;
45 9  1;   11 211; 5  112; 11 211;
46 9  1;   0  22;  5  320; 0  22;
47 9  1;   0  22;  0  22;  0  22;
48 9  1;   0  22;  0  22;  0  22;
49 9  1;   7  22   0  320; 7  22;
50 9  1;   2  21;  11 211; 2  21;
51 9  1;   4  211; 10 112; 4  211;
52 9  1;   1  32;  10 321; 1  32;
53 9  1;   1  111; 1  111; 1  111;
54 9  1;   9  222; 1  1;   9  222;
55 9  1;   10 22;  10 22;  10 22;
56 9  1;   2  1;   2  21;  2  21;
57 9  1;   4  211; 2  30;  4  211;
58 9  1;   2  1;   2  21;  2  21;
59 9  1;   2  21   2  21;  2  21;
60 9  1;   9  21;  2  220; 9  21;
61 4  22;  4  22;  5  311; 4  22;
62 4  222; 4  222; 4  222; 4  222;
63 9  21;  9  21;  5  322; 9  21;
64 2  21;  2  21;  2  21;  2  21;
65 11 211; 11 211; 11 211; 11 211;
66 9  221; 0  221; 5  320; 0  22;
67 2  221; 2  221; 2  221; 2  221;
68 11 211; 11 211; 5  112; 11 211;
69 5  10;  5  10;  11 0;   5  10;
70 5  0;   5  320; 5  320; 0  22;
71 0  22;  0  22;  0  22;  0  22;
72 9  222; 9  222; 9  222; 9  222;
73 2  21;  2  21;  1  32;  2  21;
74 3  312; 3  312; 1  1;   3  312;
75 2  21;  2  21;  2  21;  2  21;
76 1  11;  1  11;  1  11;  1  11;
77 1  30;  1  30   1  30;  1  30;
78 1  111; 1  111; 1  111; 1  111;
79 2  2;   -1 -1;  3  301; -1 -1;
80 3  302; 7  21;  3  322; 7  21;
81 7  21;  7  21;  7  21;  7  21;
82 2  22;  2  22;  3  311; 2  22;
83 2  22;  2  22;  2  22;  2  22;
84 -1 -1;  -1 -1;  2  2;   -1 -1;
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Bach Test: Rowe’s Chord

Data is beat number (embedded in test MIDI file) followed by active pitch-classes and
chord output.  Data from multiple tests with varying delay settings.  Musical score
follows raw test data.

delay 25   75

4  G B D : G major; G B D : G major;
5  G B D : G major;           G B D : G major;
6  G B D : G major; G B D : G major;
7  G B D A : G dominant 9th; G B D A : G dominant 9th;
8  C E G : C major; C E G : C major;
9  C G Bb F : C dominant 11th; C G Bb F : C dominant 11th;
10 F A C : F major;                 F A C : F major;
11 F A C : F major;                 F A C : F major;
12 F C E G : F major 9th;           F C E G : F major 9th;
13 G B D : G major;                 G B D : G major;
14 D A C E : D dominant 9th;        D A C E : D dominant 9th;
15 D F A C : D minor 7th;           D F A C : D minor 7th;
16 G B D A C : G dominant 11th;    G B D A C : G dominant 11th;   
17 C E G D : C dominant 9th;      C E G : C major;
18 C E G : C major;                 C E G : C major;
19 C E G : C major;                 C E G : C major;
20 E G B D : E minor 7th;           E G B D : E minor 7th;
21 G B D : G major;                 G B D : G major;
22 B F# A E : B dominant 11th;    B F# A E : B dominant 11th;
23 A E G B : A dominant 9th;        A E G B : A dominant 9th;
24 C E G# B : C major 7th #5;       C E G# B : C major 7th #5;
25 A C E B : A minor 9th;           A C E B : A minor 9th;
26 A C E B : A minor 9th;           A C E B : A minor 9th;
27 A C E : A minor;                 A C E : A minor;
28 B D F A C E : B half dim 11th b9;  B D F A C E : B half dim 11th b9;
29 F A Cb E : F major 7th b5;       F A Cb E : F major 7th b5;
30 E G B : E minor;                 E G B : E minor;
31 G B D : G major;                 G B D : G major;
32 E G B D F : E minor 7th b9;      E G B D F : E minor 7th b9;
33 G B D F C : G dominant 11th;  G B D F C : G dominant 11th;
34 F C E G : F major 9th;           F C E G : F major 9th;
35 C E : C major;                   C E G : C major;
36 C E G : C major;                 C E G : C major;
37 C E G : C major;                 C E G : C major;
38 E G B D : E minor 7th;           E G B D : E minor 7th;
39 A C E G D : A minor 11th;        A C E G D : A minor 11th;
40 E G B D A : E minor 11th;        E G B D A : E minor 11th;
41 B D A : B minor 7th;             B D A : B minor 7th;
42 E G B D : E minor 7th;           E G B D : E minor 7th;
43 B F A C : B half diminished b9;  B F A C : B half diminished b9;
44 B F A C : B half diminished b9;  B F A C : B half diminished b9;
45 B D F A : B half diminished 7th; B D F A : B half diminished 7th;
46 E G B D A : E minor 11th;        C E G D : C dominant 9th;
47 C E G D : C dominant 9th;        C E G D : C dominant 9th;
48 C E G : C major;                 C E G : C major;
49 C G B D : C major 9th;           C G B D : C major 9th;
50 G B D F A : G dominant 9th;    G B D F A : G dominant 9th;
51 Bb D Fb A : Bb major 7th b5;     Bb D Fb A : Bb major 7th b5;
52 G Bb Db F A : G half diminished 9th;   G Bb Db F A : G half

diminished 9th;
53 A C# E G Bb : A dominant 7th b9; A C# E G Bb : A dominant 7th

b9;



Rippin 101

54 A C# E G : A dominant 7th;             A C# E G : A dominant 7th;
55 G Bb D F C# : G minor 7th #11;       G Bb D F C# : G minor 7th

#11;
56 Bb D F A : Bb major 7th;              Bb D F A : Bb major 7th;
57 E G Bb D F A : E half dim 11th b9;     E G Bb D F A : E half dim

11th b9;
58 Bb D F A : Bb major 7th;               Bb D F A : Bb major 7th;
59 Bb D F A : Bb major 7th;               Bb D F A : Bb major 7th;
60 D A C E : D dominant 9th;              D A C E : D dominant 9th;
61 E G# B : E major;                      E G# B : E major;
62 E G# B D : E dominant 7th;             E G# B D : E dominant 7th;
63 A C E B : A minor 9th;                 A C E B : A minor 9th;
64 D F A C : D minor 7th;                 D F A C : D minor 7th;
65 B D F A : B half diminished 7th;    B D F A : B half diminished

7th;
66 A C E G D : A minor 11th;              A C E G D : A minor 11th;
67 D F A C G : D minor 11th;              D F A C G : D minor 11th;
68 B D F A C : B half diminished b9;      B D F A C : B half diminished

b9;
69 G B D F A : G dominant 9th;          G B D F A : G dominant 9th;
70 G B F : G dominant 7th;                F C E G : F major 9th;
71 F C E G : F major 9th;                 F C E G : F major 9th;
72 A C# E G B# : A dominant #9;        A C# E G B# : A dominant #9;
73 D F A C# : D minor/major 7th;        D F A C# : D minor/major 7th;
74 A E G D : A dominant 11th;            A E G D : A dominant 11th;
75 G D F A : G dominant 9th;              G D F A : G dominant 9th;
76 Db Fb Abb Ebb : Db half diminished b9; Db Fb Abb Ebb : Db half

diminished b9;
77 A C# E G F : A dominant 7th b13;     A C# E G F : A dominant 7th

b13;
78 Db Fb Abb Cbb : Db diminished 7th ;     Db Fb Abb Cbb : Db diminished

7th;
79 D F# A C# G Bb : D major 11th b13;     Bb D F# A : Bb major 7th #5;
80 G Bb D A : G minor 9th;                G Bb D A : G minor 9th;
81 G Bb D : G minor;                    G Bb D : G minor;
82 G Bb D F# A : G minor major 9th;       G Bb D F# A : G minor major

9th;
83 G Bb D F# A : G minor major 9th;       G Bb D F# A : G minor major

9th;
84 G Bb D F# A : G minor major 9th;       G Bb D F# A : G minor major

9th;
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Scriabin Test: Rippin’s Chords

Data is beat number (embedded in test MIDI file) followed by root and quality code.
Root is in pitch-class, where 0 is C, 1 is Db, and so on, and –1 is “off.”  Quality code is
deciphered as follows: M7=300, m7=200, d7=100; A5=30, P5=20, d5=10; M3=20,
m3=10.  Data from multiple tests with varying decay and delay settings.  Musical score
follows raw test data.

decay 150  300       300 500 800   
delay 75   75 125 75 75
                
1  8  12; 8  12; 8  12; 8  12; 8  12;
2  5  20;    5  20;    5  20;   5  201;  2  201;
3  7  200;   7  200;   7  200;  7  200;  2  1;
4  10 102;  10 102; 10 10;  10 102; 10 102;
5  3  2;     3  2;    3  2;    1  10;   1  10;
6  8  12;    8  12;    2  20;   0  0;    0  0;
7  5  0;     5  0;     2  20;   5  0;    2  1;
8  2  0;     7  20;    2  20;   7  20;   2  0;
9  9  0;     2  20;    2  20;   2  20;   2  20;
10 2  31;  0  22;    4  1;   0  22; 9  221;
11 2  31;   0  20;    10 0;  0  20; 0  20;
12 2  31;   10 20;   10 0;  2  31; 2  31;
13 0  200;  0  200;   10 0;  0  200; 2  230;
14 3  300;  3  10;    3  10;  3  10; 3  10;
15 3  300;  8  2;     8  2;   2  200; 2  200;
16 3  300;  0  20;    0  20;  5  20; 5  20;
17 10 20;  2  200;   10 20; 2  31; 2  31;
18 0  20;   0  20;    0  20;  0  20; 7  0;
19 2  0;    2  0;     2  0;   2  0;  2  0;
20 2  1;    2  221;   5  22;  2  220; 2  220;
21 2  1;    2  1;     2  1;   2  1;  2  1;
22 2  1;    9  20;    9  20;  9  20; 2  20;
23 2  1;    2  20;    2  20;  2  20; 2  20;
24 2  1;    2  0;     9  20;  2  0;  2  0;
25 2  1;    3  2;     3  2;   9  200; 9  200;
26 2  1;    1  31;    1  31;  1  31; 1  31;
27 2  1;    2  1;     2  1;   2  1;  2  1;
28 2  1;    2  20;    2  20;  2  20; 2  20;
29 2  1;    2  0;     2  0;   2  0;  2  0;
30 2  1;    1  2;     1  2;   7  200; 2  1;
31 10 2;   10 2;    10 2;  10 2; 10 2;
32 9  20;   9  20;    9  20;  9  20; 9  20;
33 5  100;  5  20;    5  20;  5  20; 5  20;
34 5  100;  5  20;    5  20;  -1 -1; -1 -1;
35 5  100;  10 2;    10 2;  2  0;  2  0;
36 5  100;  9  200;   9  200; 5 2;  2 20;
37 5  100;  1  0;     1  0;   1 0;  1 0;
38 5  100;  7  0;     7  0;   4 1;  1 10;
39 5  100;  11 0;     11 0;  7 2;  7 2;
40 5  100;  7  20;    7  20;  7 20; 7 20;
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41 5  100;  9  1;     5  1;   5 22; 2 220;
42 5  100;  1  12;    1  12;  1 12; 1 12;
43 7  200;  7  200;   7  200; 7 200; 7 200;
44 5  12;   5  12;    5  10;  5 12; 5 12;
45 10 102;  10 102;   10 102; 4 201; 1 1;
46 9  1;    5  0;     9  1;   5 22; 5 22;
47 1  12;   5  0;     1  12;  1 12; 5 0;
48 7  0;    5  0;     7  0;   7 0;  7 0;
49 7  0;    5  0;     0  0;   0 0;  0 0;
50 0  0;    0  22;    0  22;  0 22; 0 22;
51 0  0;    0  0;     0  22;  0 22; 0 22;
52 0  0;    0  0;     -1 -1; 0 0;  0 0;
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Scriabin Test: Rowe’s Chord

Data is beat number (embedded in test MIDI file) followed by active pitch-classes and
chord output.  Data from multiple tests with varying delay settings.  Musical score
follows raw test data.

delay 25 75 125

1 C : C unison;            D C : D dominant 7th;    D C : D dominant 7th;
2 F C : F major;           F C : F major;           F C : F major;
3 G D F : G dominant 7th;  G D F : G dominant 7th;      G D F : G dominant 7th;
4 E G D F : E minor 7th b9;   E G D F : E minor 7th b9;       E G D F : E minor 7th b9;
5 A G : A dominant 7th;       A G : A dominant 7th;           A G : A dominant 7th;
6 A C G : A minor 7th;        D C : D dominant 7th;           D C : D dominant 7th;
7 F C : F major;              F C : F major;              F C : F major;
8 G D F : G dominant 7th;     G D F : G dominant 7th;         G D F : G dominant 7th;
9 D A C G : D dominant 11th;  D A C G : D dominant 11th;      D A C G : D dominant 11th;
10 E G : E minor;            E G : E minor;                  E G : E minor;
11 C G : C major;            C G : C major;                  C G : C major;            
12 Bb F : Bb major;          Bb F : Bb major;                Bb F : Bb major;
13 C G Bb : C dominant 7th;  C G Bb : C dominant 7th;        C G Bb : C dominant 7th;
14 A G : A dominant 7th;     A G : A dominant 7th;           A G : A dominant 7th;
15 D C : D dominant 7th;     D C : D dominant 7th;           D C : D dominant 7th;
16 C G : C major;            C G : C major;                  C G : C major;
17 Bb F : Bb major;          Bb F : Bb major;                Bb F : Bb major;
18 C G Bb : C dominant 7th;  C G Bb : C dominant 7th;        C G Bb : C dominant 7th;
19 D F C : D minor 7th;      D F C : D minor 7th;            D F C : D minor 7th;
20 A C : A minor;            A C : A minor;                  A C : A minor;
21 D F : D minor;            D F : D minor;                  D F : D minor;
22 A E : A major;            A E : A major;                  A E : A major;
23 D F A C : D minor 7th;    D F A C : D minor 7th;          D F A C : D minor 7th;
24 D A E : D dominant 9th;   D A E : D dominant 9th;         D A E : D dominant 9th;
25 A G : A dominant 7th;     A G : A dominant 7th;           A G : A dominant 7th;
26 F A E : F major 7th;      F A E : F major 7th;            F A E : F major 7th;
27 D F : D minor;            D F : D minor;                  D F : D minor;
28 D F A C : D minor 7th;    D F A C : D minor 7th;          D F A C : D minor 7th;
29 D C : D dominant 7th;     D C : D dominant 7th;           D C : D dominant 7th;
30 F : F unison;             F : F unison;               F : F unison;
31 E D : E dominant 7th;     E D : E dominant 7th;           E D : E dominant 7th;
32 A E : A major;            A E : A major;                  A E : A major;
33 F C : F major;            F C : F major;              F C : F major;
34 F C : F major;            F C : F major;              F C : F major;
35 D : D unison;             D : D unison;               D : D unison;
36 A C G : A minor 7th;      A C G : A minor 7th;            A C G : A minor 7th;
37 F E : F major 7th;        F E : F major 7th;              F E : F major 7th;
38 G B : G major;            G B : G major;                  G B : G major;
39 B D : B minor;            B D : B minor;                  B D : B minor;
40 G D : G major;            G D : G major;                  G D : G major;
41 A C : A minor;            A C : A minor;                  A C : A minor;
42 F E G : F major 9th;      F E G : F major 9th;            G B F A : G dominant 9th;
43 G D F : G dominant 7th;   G D F : G dominant 7th;         G B F A : G dominant 9th;
44 G B F A : G dominant 9th;  G B F A : G dominant 9th;       G B F A : G dominant 9th;
45 E G D F : E minor 7th b9;  E G D F : E minor 7th b9;       E G D F : E minor 7th b9;
46 B D : B minor;            A C : A minor;                  G F : G dominant 7th;
47 G F : G dominant 7th;     G F : G dominant 7th;           G F : G dominant 7th;
48 G F : G dominant 7th;     G F : G dominant 7th;           G F : G dominant 7th;
49 C G : C major;            E G : E minor;                  C G : C major;
50 E G : E minor;            E G : E minor;                  E G : E minor;
51 C E G : C major;          C E G : C major;                C E G : C major;
52 C E G : C major;          C E G : C major;                C E G : C major;
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